加油花花 发表于 2013-1-25 16:21

matlab悬臂薄板固有频率计算前三阶=0???

用matlab编程计算悬臂薄板前十五阶固有频率 ,结果为;
frequency =

1.0e+004 *

Columns 1 through 8

      0 + 0.0000i   0.0000             0.0000             0.1837             0.5090             0.5852             1.0043             1.1981         

Columns 9 through 15

   1.6716             1.8640             2.5144             2.6052             3.4420             3.5358             4.3945


是否因为引入边界条件有问题,应如何更改?
程序如下:
function gy

    PlaneFrameModel ;             % 定义有限元模型
    SolveModel ;                  % 求解有限元模型

return ;

function PlaneFrameModel
globallx ly jdx jdy gNode gElement gMaterial gBC1 ke me gK gM

% 给定几何特征   
E=2.1e11;                    %elastic molulus
poisson =0.3;         % poisson ratio
density=7.85e3;      %density
t=0.000152;               %plate thickness
lx=0.021;               %length in x direction
ly=0.004;               %length in y direction
jdx=11;               %number of nodes in x direction
jdy=11;               %number of nodes in y direction

    % 计算结点坐标
    dx = lx / (jdx-1);   
    dy = ly / (jdy-1);
    gNode = zeros( jdx*jdy, 2 ) ;
    for i=1:jdx
      for j=1:jdy
            gNode( (i-1)*jdy+j, : ) = ;
      end
    end

    % 定义单元
    gElement = zeros( (jdx-1)*(jdy-1), 5 ) ;
    for i=1:(jdx-1)
      for j=1:(jdy-1)
            gElement( (i-1)*(jdx-1)+j, 1:4) = [ (i-1)*jdx+j, ...
                                          (i-1)*jdx+j+1, ...
                                          i*jdx+j+1,...
                                          i*jdx+j ] ;
      end
    end
    gElement( :, 5 ) = 1 ;

    % 定义材料
    gMaterial = [ E, poisson, t, density] ;

    % 确定边界条件
    gBC1 = zeros( jdx*3, 3 ) ;

    for i=1:jdx
      gBC1( i, : ) = ;         % x=0的边界上挠度等于零
    end
    for i=1:jdx
      gBC1( jdx+i, : ) = ;         % x=0的边界上绕x轴的转角等于零
    end
    for i=1:jdx
      gBC1( jdx*2+i, : ) = ;      % x=0的边界上绕y轴的转角等于零
    end

% 定义整体刚度矩阵和节点力向量
    = size( gNode ) ;
    gK = zeros( node_number * 3, node_number * 3 ) ;
    gM = zeros( node_number * 3, node_number * 3 ) ;
    f = zeros( node_number * 3, 1) ;

% 计算单元刚度和质量矩阵,并集成到整体刚度和质量矩阵中
    = size( gElement ) ;
    for ie=1:1:element_number
      ke = StiffnessMatrix( ie ) ;
      me = MassMatrix( ie ) ;
      AssembleGlobalMatrix( ie, ke, me ) ;   

    end

    return

    % 对gK进行边界条件处理
    = size( gBC1 ) ;

    for ibc=1:1:bc1_number
      n = gBC1(ibc, 1 ) ;
      d = gBC1(ibc, 2 ) ;
      m = (n-1)*3 + d ;
      K1im(:,ibc) = gK(:,m) ;
      gK(:,m) = zeros( node_number*3, 1 ) ;
      gK(m,:) = zeros( 1, node_number*3 ) ;
      gK(m,m) = 1.0 ;

    end

function SolveModel

global lx ly jdx jdy gNode gElement gMaterial gBC1 ke me gK gM
%solve eigenvalue problem
= eig(gK,gM);
tempd=diag(d);
=sort(tempd);
v=v(:,sortindex);
mode_number=1:15;
frequency(mode_number)=sqrt(nd(mode_number))/(2*pi);
frequency

return



function ke = StiffnessMatrix( ie )
%计算单元刚度矩阵
%输入参数:
%   ie -------单元号
%返回值:
%   k----整体坐标系下的刚度矩阵
global lx ly jdx jdy gElement gMaterial
ke = zeros( 12, 12 ) ;
E = gMaterial( gElement(ie, 5), 1 ) ;
poisson = gMaterial( gElement(ie, 5), 2 ) ;
t = gMaterial( gElement(ie, 5), 3 ) ;
density = gMaterial( gElement(ie, 5), 4 ) ;
a=lx/(jdx-1)/2;      %element length
b=ly/(jdy-1)/2;       %element height

ke=[E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2),          E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b),            E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2),            E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2),                               -30*E*t^3/(360-360*poisson^2)*poisson,          E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2),                                                               0,                E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2),                                                               0,             E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2),                                                               0;
E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a),                               -30*E*t^3/(360-360*poisson^2)*poisson,          E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2),            E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a),                                                               0,                     E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2),         E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a),                                                               0,          E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2),         E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a),                                                               0,         E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2);
E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2),          E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b),            E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2),            E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b+15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2),                                                               0,            E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b+30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2),                              30*E*t^3/(360-360*poisson^2)*poisson,         E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2),                                                               0,            E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2),                                                               0;
E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a),                                                               0,            E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2),         E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a),                              30*E*t^3/(360-360*poisson^2)*poisson,          E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2),          E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a),                                                               0,                   E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2),            E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a),                                                               0,          E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2);
E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2),            E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2),          E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b),            E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2),                                                               0,            E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2),                                                               0,               E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2),                               -30*E*t^3/(360-360*poisson^2)*poisson,         E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2),                                                               0;
E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a),                                                               0,         E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2),          E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a+15*b^2/a),                                                               0,               E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2),         E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a+30*b^2/a),                               -30*E*t^3/(360-360*poisson^2)*poisson,          E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2),         E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a),                                                               0,                  E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2);
E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson+15*b^2/a^2-30*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b-30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson-15*b^2/a^2-15*a^2/b^2),            E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b-15*a^2/b),            E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a-15*b^2/a), E*t^3/(360-360*poisson^2)/a/b*(-21+6*poisson-30*b^2/a^2+15*a^2/b^2),         E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a-30*b^2/a),E*t^3/(360-360*poisson^2)/a/b*(21-6*poisson+30*b^2/a^2+30*a^2/b^2),          E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a);
E*t^3/(360-360*poisson^2)/a/b*(3*b-3*poisson*b+30*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-2*b^2+2*poisson*b^2+20*a^2),                                                               0,             E*t^3/(360-360*poisson^2)/a/b*(-3*b+3*poisson*b+15*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(2*b^2-2*poisson*b^2+10*a^2),                                                               0,             E*t^3/(360-360*poisson^2)/a/b*(3*b+12*poisson*b-15*a^2/b),         E*t^3/(360-360*poisson^2)/a/b*(-8*b^2+8*poisson*b^2+20*a^2),                                                               0,            E*t^3/(360-360*poisson^2)/a/b*(-3*b-12*poisson*b-30*a^2/b),          E*t^3/(360-360*poisson^2)/a/b*(8*b^2-8*poisson*b^2+40*a^2),                              30*E*t^3/(360-360*poisson^2)*poisson;
E*t^3/(360-360*poisson^2)/a/b*(3*a+12*poisson*a-15*b^2/a),                                                               0,         E*t^3/(360-360*poisson^2)/a/b*(-8*a^2+8*poisson*a^2+20*b^2),         E*t^3/(360-360*poisson^2)/a/b*(-3*a+3*poisson*a+15*b^2/a),                                                               0,             E*t^3/(360-360*poisson^2)/a/b*(2*a^2-2*poisson*a^2+10*b^2),            E*t^3/(360-360*poisson^2)/a/b*(3*a-3*poisson*a+30*b^2/a),                                                               0,            E*t^3/(360-360*poisson^2)/a/b*(-2*a^2+2*poisson*a^2+20*b^2),          E*t^3/(360-360*poisson^2)/a/b*(-3*a-12*poisson*a-30*b^2/a),                              30*E*t^3/(360-360*poisson^2)*poisson,          E*t^3/(360-360*poisson^2)/a/b*(8*a^2-8*poisson*a^2+40*b^2)];
return

function me = MassMatrix( ie )
%计算单元质量矩阵
%输入参数:
%   ie -------单元号
%返回值:
%   m----整体坐标系下的质量矩阵
global lx ly jdx jdy gElement gMaterial
me = zeros( 12, 12 ) ;
E = gMaterial( gElement(ie, 5), 1 ) ;
poisson = gMaterial( gElement(ie, 5), 2 ) ;
t = gMaterial( gElement(ie, 5), 3 ) ;
density = gMaterial( gElement(ie, 5), 4 ) ;
a=lx/(jdx-1)/2;      %element length
b=ly/(jdy-1)/2;       %element height
w=a*b*t*density;
syms kx yt kxi yti real;
ni=1/8*(1+kx*kxi)*(1+yt*yti)*(2+kx*kxi+yt*yti-kx^2-yt^2);
nix=-1/8*b*yti*(1+kx*kxi)*(1+yt*yti)*(1-yt^2);
niy=1/8*a*kxi*(1+kx*kxi)*(1+yt*yti)*(1-kx^2);
n(1)=subs(ni,{kxi,yti},{-1,-1});
n(2)=subs(nix,{kxi,yti},{-1,-1});
n(3)=subs(niy,{kxi,yti},{-1,-1});

n(4)=subs(ni,{kxi,yti},{1,-1});
n(5)=subs(nix,{kxi,yti},{1,-1});
n(6)=subs(niy,{kxi,yti},{1,-1});

n(7)=subs(ni,{kxi,yti},{1,1});
n(8)=subs(nix,{kxi,yti},{1,1});
n(9)=subs(niy,{kxi,yti},{1,1});

n(10)=subs(ni,{kxi,yti},{-1,1});
n(11)=subs(nix,{kxi,yti},{-1,1});
n(12)=subs(niy,{kxi,yti},{-1,1});

temp=n'*n;
m1=int(temp,kx,-1,1);
me=int(m1,yt,-1,1);
me=me*w;
me=double(me);
return

function AssembleGlobalMatrix( ie, ke, me )
%把单元刚度和质量矩阵集成到整体刚度矩阵
%输入参数:
%      ie--- 单元号
%      ke--- 单元刚度矩阵
%      me--- 单元质量矩阵
%返回值:
%      无
    global gElement gK gM
    for i=1:1:4
      for j=1:1:4
            for p=1:1:3
                for q =1:1:3
                  m = (i-1)*3+p ;
                  n = (j-1)*3+q ;
                  M = (gElement(ie,i)-1)*3+p ;
                  N = (gElement(ie,j)-1)*3+q ;
                  gK(M,N) = gK(M,N) + ke(m,n) ;
                  gM(M,N) = gM(M,N) + me(m,n) ;
                end
            end
      end
    end

return

shegnwulian 发表于 2014-4-16 16:59

同学你的问题解决了吗,我也在做这方面的研究,能否交流下,QQ997236069

ZXinNCHU 发表于 2014-5-28 08:31

你用的单元是几个节点呢

psudq 发表于 2014-7-7 15:28

K阵好复杂 为什么没有poisson等为什么没有选个简单的变量 建议看徐兆东书
页: [1]
查看完整版本: matlab悬臂薄板固有频率计算前三阶=0???