[讨论]非线性微分方程的多解问题
非线性微分方程可能存在不同的周期解,那么我们可以用那些方法求出这些周期解,看了一些文献和书,但是还是似懂非懂的,
还是不知道怎么下手做。
那位做过或者对这个感兴趣的可以上来指导一下,谢谢!
[ 本帖最后由 咕噜噜 于 2007-6-14 18:54 编辑 ] 这方面现在用搜索延拓算法比较多
前一段时间买了一本《非线性微分方程多解计算的搜索延拓法》
不过一直没有太多时间去看
[ 本帖最后由 xinyuxf 于 2007-6-6 14:21 编辑 ] 原帖由 gghhjj 于 2007-5-30 04:18 发表 http://www.chinavib.com/forum/images/common/back.gif
这方面现在用搜索延拓算法比较多
前一段时间买了一本《非线性微分方程多解计算的搜索延拓法》
不过一致没有太多时间去看
这本书我看了,但是还是糊涂的
觉得它根本就不是讲微分方程的多解问题。很不好的书! 原帖由 无水1324 于 2007-5-30 09:40 发表 http://www.chinavib.com/forum/images/common/back.gif
这本书我看了,但是还是糊涂的
觉得它根本就不是讲微分方程的多解问题。很不好的书!
本书后面两章讲的是延拓有限元和延拓边界元,应该可以用于微分方程的求解
不过作者没有直接写微分方程
[ 本帖最后由 无水1324 于 2007-5-31 08:28 编辑 ] 原帖由 gghhjj 于 2007-5-31 06:37 发表 http://www.chinavib.com/forum/images/common/back.gif
本书后面两章讲的是延拓有限元和延拓边界元,应该可以用于微分方程的求解
不过作者没有直接写微分方程
好的
谢谢!
我再看看先,我现在在做的事点映射法求周期轨道,然后二者对比! 原帖由 无水1324 于 2007-5-31 08:30 发表 http://www.chinavib.com/forum/images/common/back.gif
好的
谢谢!
我再看看先,我现在在做的事点映射法求周期轨道,然后二者对比!
不知道效果怎么样? 原帖由 gghhjj 于 2007-6-2 05:40 发表 http://www.chinavib.com/forum/images/common/back.gif
不知道效果怎么样?
效果怎么样还没有做出来!
这几天忙着其它的事情去了 原帖由 无水1324 于 2007-6-2 10:39 发表 http://www.chinavib.com/forum/images/common/back.gif
效果怎么样还没有做出来!
这几天忙着其它的事情去了
呵呵,期待你的结果 有没有其他的人在考虑这方面的,谢谢!
做点映射和胞映射的都可以 原帖由 无水1324 于 2007-6-4 09:53 发表 http://www.chinavib.com/forum/images/common/back.gif
有没有其他的人在考虑这方面的,谢谢!
做点映射和胞映射的都可以
做这个的显然很少
http://www.chinavib.com/forum/viewthread.php?tid=2528
有一个程序流程 原帖由 gghhjj 于 2007-6-5 05:20 发表 http://www.chinavib.com/forum/images/common/back.gif
做这个的显然很少
http://www.chinavib.com/forum/viewthread.php?tid=2528
有一个程序流程
流程图还是可以找到,就是里面有一个东西很不好处理,觉得求得的解很大程度决定于那部分 原帖由 无水1324 于 2007-6-5 08:40 发表 http://www.chinavib.com/forum/images/common/back.gif
流程图还是可以找到,就是里面有一个东西很不好处理,觉得求得的解很大程度决定于那部分
你指得是不是mew程序中的逻辑关系? 恩,太容易搞混了,你有什么好的方法没有? 原帖由 无水1324 于 2007-6-6 08:17 发表 http://www.chinavib.com/forum/images/common/back.gif
恩,太容易搞混了,你有什么好的方法没有?
没有,否则的话这个程序我早写了,也好不至于拖到现在还没有动手 原帖由 gghhjj 于 2007-6-7 04:55 发表 http://www.chinavib.com/forum/images/common/back.gif
没有,否则的话这个程序我早写了,也好不至于拖到现在还没有动手
那我也得加油了,每次都写着写不动了。以为没有看懂,看了书之后还是一样
页:
[1]
2