请教,leave-1/5-out 交叉验证是怎样的操作?谢谢!
leave-1/5-out cross validation 是怎样操作的?望高手赐教! Cross Validation一般而言, SVM 使用的方式(在决定参数时)常是这样:
1. 先有已分好类的一堆资料
2. 随机数拆成好几组 training set
3. 用某组参数去 train 并 predict 别组看正确率
4. 正确率不够的话,换参数再重复 train/predict
不知道,leave-1/5-out是什么 我知道leave one out是随机拿一个做测试,其余剩下的做训练.如此反复循环多次.
leave 1/5out是不是拿1或者5的数量做测试,其余做训练呀.只是猜测,呵呵 帮助中有详细的说明
= crossvalind('LeaveMOut', N,M), where M is an integer, returns logical index vectors for cross-validation of N observations by randomly selecting M of the observations to hold out for the evaluation set. M defaults to 1 when omitted. Using LeaveMOut cross-validation within a loop does not guarantee isjointed evaluation sets. Use K-fold instead.
页:
[1]