wangbohust 发表于 2007-8-6 18:03

请问下面的porincare 图的含义

各位大侠,能否帮忙看看下面的porincare 图的含义;其中图一为时程图,图二为porincare 图

无水1324 发表于 2007-8-6 18:35

回复 #1 wangbohust 的帖子

漂亮的图片,

从含义来说,Poincare形成的是一个环,那么它应该是一概周期响应

咕噜噜 发表于 2007-8-6 18:52

从两个图都可以看出是概周期,如果时间图在时间趋向无穷时依旧如此话

octopussheng 发表于 2007-8-6 21:07

概周期运动!截面为一个闭环嘛!

liliangbiao 发表于 2007-8-11 11:05

I really do not think so, because it is not a circle at all. Please attach the 3-D pahse space if the system is a high dimensional system. And please check it with other methods, such as the power spectrum, Lyapunov exponents, because quasi-periodic motion is clarified well with these two method, and the power spectrum can give you some important information.Plese check them!

liliangbiao 发表于 2007-8-11 11:11

Please look this!

This is a 3-D chaotic flows which presented by myself, and this 3-D chaotic autonomous chaotic flow has been reserched recently, and the results has been submitted to a SCI journal. It's can be found two torus, with 2 LEs =0.
Figure(1):3-D Phase space of the attractor
Figure(2): Poincare section on the x-y plane of the attractor
Figure(3): Lyapunov-exponent spectrum of the attractor

[ 本帖最后由 liliangbiao 于 2007-8-11 11:15 编辑 ]

shenyongjun 发表于 2007-8-11 17:38

回复 #1 wangbohust 的帖子

从时间历程来看,可能是拟周期的,也有可能是周期调幅信号;
从Poincare截面看(如果截面构造无误的话),应该是拟周期的。

[ 本帖最后由 shenyongjun 于 2007-8-11 17:39 编辑 ]

liliangbiao 发表于 2007-8-11 22:29

诸位注意了,概周期和拟周期有着根本的的区别!所以不能说得到一个环,就说是概周期的!应该再细致的研究一下!
页: [1]
查看完整版本: 请问下面的porincare 图的含义