lushuang8 发表于 2009-11-22 20:40

Hilbert变换

一下这个程序是考虑两个耦合的rossler系统的相同步的,但是却不能与文献相同的结果
matlab程序如下:
clear all
global omiga
global C
omiga=0.015;
C=input('input the value of controling parameter c =');
% 微分方程的初始值。
x0=;
tspan=;
options=odeset('RelTol',1e-10);
=ode45(@rossler,tspan,x0,options);
% 希尔伯特变换相位。
hy=hilbert(y);
% x1
phi1=atan(imag(hy(:,1))./y(:,1));
% x2
phi2=atan(imag(hy(:,4))./y(:,4));
% 相位差。
phi=phi1 - phi2;
plot(t,phi,'r.')
调用的函数如下:
function y=rossler(t,x)
global omiga
global C
y=[-(1+omiga)*x(2)-x(3)+C*(x(4)-x(1));
    (1+omiga)*x(1)+0.15*x(2);
   0.2+x(3)*(x(1)-10);
   -(1-omiga)*x(5)-x(6)+C*(x(1)-x(4));
    (1-omiga)*x(4)+0.15*x(5);
   0.2+x(6)*(x(4)-10)];
x(1:6)分别表示x1,y1,z1,x2,y2,z2是rossler系统的变量,PRE上给出的图是

我的结果与此图相差甚远,请高手指点!

lushuang8 发表于 2009-12-2 23:43

怎么没有人回应啊!

liuhongjuan 发表于 2010-4-22 18:17

我跟你遇到同样的问题

我也在研究相同步,也研究了这篇论文,结果也是无法达到和它一样。

lushuang8 发表于 2010-4-24 11:35

回复

那你觉得我的程序里面有什么地方不对吧,谢谢指正!?

lushuang8 发表于 2010-4-24 12:20

回复

我的腾讯号:1070897510,欢迎就这个问题一起交流!
页: [1]
查看完整版本: Hilbert变换