李雅普诺夫指数计算的问题
选择了以下程序进行试计算,为了验证程序是否正确,我采用的测试数据是论坛上所提及的Lorenz方程算出的:1.主程序
% 此程序用来测试CC_method
clear all
clear all
%利用方程获得
% 产生 Lorenz 时间序列
% dx/dt = sigma*(y-x)
% dy/dt = r*x - y - x*z
% dz/dt = -b*z + x*y
sigma=16;
% Lorenz 方程参数
b=4;
r=45.92;
y=[-1,0,1];
% 起始点 (1 x 3 的行向量)
h=0.01;
% 积分时间步长
k1=10000;
% 前面的迭代点数
k2=3000;
% 后面的迭代点数
Z=LorenzData(y,h,k1+k2,sigma,r,b);
X=Z(k1+1:end,1);
max_d=200;
% 最大延迟时间
% 调用C_CMethod_inf,求tau
tic
=C_CMethod_inf(X,max_d);
toc
tau_inf
tw_inf
% 相关作图
figure('name','CC法求时间延迟');
plot(1:max_d,Smean_inf,'-b');hold on;
plot(1:max_d,Sdeltmean_inf,'-*c');hold on;
plot(1:max_d,Scor_inf,'-m');hold on;
plot(1:max_d,zeros(1,max_d),'r');
title('C_CMethod_inf');xlabel('Lag');
legend('S(t)平均值','ΔS(t)平均值','Scor_inf');
% 将数据保持下来
fid=fopen('Smean_inf.txt','w');
fprintf(fid,'%f\n',Smean_inf);
fclose(fid);
fid=fopen('Sdeltmean_inf.txt','w');
fprintf(fid,'%f\n',Sdeltmean_inf);
fclose(fid);
fid=fopen('Scor_inf.txt','w');
fprintf(fid,'%f\n',Scor_inf);
fclose(fid);
2.子函数1
function =C_CMethod_inf(X,max_d)
% 用于求延迟时间tau
% X为输入时间序列
% max_d为最大时间延迟
% Smean,Sdeltmean,Scor为返回值
% tau为计算得到的延迟时间
% tw为时间窗口
N=length(X);
Smean=zeros(1,max_d);
Scmean=zeros(1,max_d);
Scor=zeros(1,max_d);
delt=std(X);
% 计算Smean,Sdeltmean,Scor
for t=1:max_d
S=zeros(4,4);
Sdelt=zeros(1,4);
for m=2:5
for j=1:4
r=delt*j/2;
Xdt=disjoint(X,N,t);
% 将时间序列X分解成t个不相交的时间序列
Xdt=Xdt';
s=0;
for tau=1:t
N_t=floor(N/t);
% 分成的子序列长度
Y=Xdt(:,tau);
% 每个子序列
Cs1(tau)=correlation_integral_inf(Y,N_t,r);% 计算C(1,N/t,r,t)
Z=reconstitution(Y,N_t,m,1);
% 相空间重构
Z=Z';
M=N_t-(m-1);
Cs(tau)=correlation_integral_inf(Z,M,r); % 计算C(m,N/t,r,t)
s=s+(Cs(tau)-Cs1(tau)^m);
% 对t个不相关的时间序列求和
end
S(m-1,j)=s/tau;
end
Sdelt(m-1)=max(S(m-1,:))-min(S(m-1,:));
% 差量计算
end
Smean(t)=mean(mean(S));
% 计算平均值
Sdeltmean(t)=mean(Sdelt);
% 计算平均值
Scor(t)=abs(Smean(t))+Sdeltmean(t);
end
% 寻找时间延迟tau:即Sdeltmean第一个极小值点对应的t
for i=2:length(Sdeltmean)-1
if Sdeltmean(i)<Sdeltmean(i-1)&Sdeltmean(i)<Sdeltmean(i+1)
tau=i;
break;
end
end
% 寻找时间窗口tw:即Scor最小值对应的t
for i=1:length(Scor)
if Scor(i)==min(Scor)
tw=i;
break;
end
end
3.子函数2
function data_d=disjoint(data,N,t)
% 此函数用于将时间序列分解成t个不相交的时间序列
% data:输入时间序列
% N:data的长度
% t:the index lag
% data_d:返回分解后的t个不相交的时间序列
for i=1:t
for j=1:(N/t)
data_d(i,j)=data(i+(j-1)*t);
end
end
4.子函数3
function Data=reconstitution(data,N,m,tau)
% 该函数用来重构相空间
% data为输入时间序列
% N为时间序列长度
% m为嵌入空间维数
% tau为时间延迟
% Y为输出,是M*m维矩阵
M=N-(m-1)*tau;
Data=zeros(m,M);
for i=1:m
Data(i,:)=data([((i-1)*tau+1):1:((i-1)*tau+M)]);
end
5.子函数4
function C=correlation_integral_inf(Y,M,r)
% 此函数用于计算关联积分,取无穷范数
% Y为重构的相空间
% M为相空间中点的个数
% r为搜索半径
% Y为输出,是M*m维矩阵
C=0;
for i=1:M-1
for j=i+1:M
d1=norm((Y(i,:)-Y(j,:)),inf);
% 计算状态空间中每两点之间的距离,取无穷范数
if r-d1>=0
C=C+1;
end
end
end
C=2*C/(M*(M-1));
6. 运行结果
tau=10,与书上的值吻合,但是tw算出来是148,而书上是100,通过对scor值的比较发现,确实是148处的值最小(0.0070341
),而在100时scor数值为0.016844,不知为何书上选择100处作为最小值?
另外85点处值为0.013411
7.对指数进行计算
由上cc法算出的嵌入维度是15,再进行lypunove指数计算,
lambda_1=lyapunov_wolf(X,3000,15,tau,20)
function lambda_1=lyapunov_wolf(data,N,m,tau,P)
%该函数用来计算时间序列的最大Lyapunov 指数--Wolf 方法
%m: 嵌入维数
%tau:时间延迟
%data:时间序列
%N:时间序列长度
%P:时间序列的平均周期,选择演化相点距当前点的位置差,即若当前相点为I,则演化相点只能在|I-J|>P的相点中搜寻
%lambda_1:返回最大lyapunov指数值
min_point=1; %&&要求最少搜索到的点数
MAX_CISHU=5 ;%&&最大增加搜索范围次数
%FLYINGHAWK
% 求最大、最小和平均相点距离
max_d = 0; %最大相点距离
min_d = 1.0e+100; %最小相点距离
avg_dd = 0;
Y=reconstitution(data,N,m,tau); %相空间重构
M=N-(m-1)*tau; %重构相空间中相点的个数
for i = 1 : (M-1)
for j = i+1 : M
d = 0;
for k = 1 : m
d = d + (Y(k,i)-Y(k,j))*(Y(k,i)-Y(k,j));
end
d = sqrt(d);
if max_d < d
max_d = d;
end
if min_d > d
min_d = d;
end
avg_dd = avg_dd + d;
end
end
avg_d = 2*avg_dd/(M*(M-1)); %平均相点距离
dlt_eps = (avg_d - min_d) * 0.02 ; %若在min_eps~max_eps中找不到演化相点时,对max_eps的放宽幅度
min_eps = min_d + dlt_eps / 2 ; %演化相点与当前相点距离的最小限
max_eps = min_d + 2 * dlt_eps; %&&演化相点与当前相点距离的最大限
% 从P+1~M-1个相点中找与第一个相点最近的相点位置(Loc_DK)及其最短距离DK
DK = 1.0e+100; %第i个相点到其最近距离点的距离
Loc_DK = 2; %第i个相点对应的最近距离点的下标
for i = (P+1):(M-1) %限制短暂分离,从点P+1开始搜索
d = 0;
for k = 1 : m
d = d + (Y(k,i)-Y(k,1))*(Y(k,i)-Y(k,1));
end
d = sqrt(d);
if (d < DK) & (d > min_eps)
DK = d;
Loc_DK = i;
end
end
% 以下计算各相点对应的李氏数保存到lmd()数组中
% i 为相点序号,从1到(M-1),也是i-1点的演化点;Loc_DK为相点i-1对应最短距离的相点位置,DK为其对应的最短距离
% Loc_DK+1为Loc_DK的演化点,DK1为i点到Loc_DK+1点的距离,称为演化距离
% 前i个log2(DK1/DK)的累计和用于求i点的lambda值
sum_lmd = 0 ; % 存放前i个log2(DK1/DK)的累计和
for i = 2 : (M-1) % 计算演化距离
DK1 = 0;
for k = 1 : m
DK1 = DK1 + (Y(k,i)-Y(k,Loc_DK+1))*(Y(k,i)-Y(k,Loc_DK+1));
end
DK1 = sqrt(DK1);
old_Loc_DK = Loc_DK ; % 保存原最近位置相点
old_DK=DK;
% 计算前i个log2(DK1/DK)的累计和以及保存i点的李氏指数
if (DK1 ~= 0)&( DK ~= 0)
sum_lmd = sum_lmd + log(DK1/DK) /log(2);
end
lmd(i-1) = sum_lmd/(i-1);
% 以下寻找i点的最短距离:要求距离在指定距离范围内尽量短,与DK1的角度最小
point_num = 0; % &&在指定距离范围内找到的候选相点的个数
cos_sita = 0; %&&夹角余弦的比较初值 ——要求一定是锐角
zjfwcs=0 ;%&&增加范围次数
while (point_num == 0)
% * 搜索相点
for j = 1 : (M-1)
if abs(j-i) <=(P-1) %&&候选点距当前点太近,跳过!
continue;
end
%*计算候选点与当前点的距离
dnew = 0;
for k = 1 : m
dnew = dnew + (Y(k,i)-Y(k,j))*(Y(k,i)-Y(k,j));
end
dnew = sqrt(dnew);
if (dnew < min_eps)|( dnew > max_eps ) %&&不在距离范围,跳过!
continue;
end
%*计算夹角余弦及比较
DOT = 0;
for k = 1 : m
DOT = DOT+(Y(k,i)-Y(k,j))*(Y(k,i)-Y(k,old_Loc_DK+1));
end
CTH = DOT/(dnew*DK1);
if acos(CTH) > (3.14151926/4) %&&不是小于45度的角,跳过!
continue;
end
if CTH > cos_sita %&&新夹角小于过去已找到的相点的夹角,保留
cos_sita = CTH;
Loc_DK = j;
DK = dnew;
end
point_num = point_num +1;
end
if point_num <= min_point
max_eps = max_eps + dlt_eps;
zjfwcs =zjfwcs +1;
if zjfwcs > MAX_CISHU %&&超过最大放宽次数,改找最近的点
DK = 1.0e+100;
for ii = 1 : (M-1)
if abs(i-ii) <= (P-1) %&&候选点距当前点太近,跳过!
continue;
end
d = 0;
for k = 1 : m
d = d + (Y(k,i)-Y(k,ii))*(Y(k,i)-Y(k,ii));
end
d = sqrt(d);
if (d < DK) & (d > min_eps)
DK = d;
Loc_DK = ii;
end
end
break;
end
point_num = 0 ; %&&扩大距离范围后重新搜索
cos_sita = 0;
end
end
end
%取平均得到最大李雅普诺夫指数
lambda_1=sum(lmd)/length(lmd);
算出的值是0.0084与A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985) 285.上的1.5相差很远,不知何故,期望指点。
另外对于平均时间周期P的选值,究竟应该选择多少才更为合适,我试了一下,用P=20 和P=60的值基本一致。
再有就是gp法算嵌入维的话,在ln_r,ln_C曲线图上存在直线段,则该直线的斜率即为相关维度D。
反复以不同的嵌入维度m,计算各嵌入维度下之相关维度,即在不同嵌入维度下各有一条曲线与相关维度。若嵌入维度越大,且相关维度成收敛情形,即代表序列具有混沌现象,其收敛值即为此时间序列之相关维度。
究竟是怎么得出 嵌入维的?请大家指教 好帖,详细,先顶了再说。我是初学的,要是我能用这个计算出来指数,再来谢你 不会弄。。
回复 沙发 pestp 的帖子
关键是我计算以后发现算出的数并不吻合啊 同样。。计算出来的lorenz系统(a=16 b=4 c=45.92) 最大指数算出来太小了。。搞不懂 for k = 1 : mDOT = DOT+(Y(k,i)-Y(k,j))*(Y(k,i)-Y(k,old_Loc_DK+1));
end
CTH = DOT/(dnew*DK1);
这个计算余弦值的 怎么跟余弦公式不一样。。是不是错了
cth=(b^2+c^2-a^2)/(2bc)
CTH=( (Dnew))^2+(DK1)^2-(Y(k,j)-Y(k,old_Loc_Dk+1)^2 ) /(2Dnew*DK1)
1
Lorenzdata.m文件的内容能不能告诉我一下啊谢谢 有点难:lol 很难,不明白% 相关作图figure('name','CC法求时间延迟');
plot(1:max_d,Smean_inf,'-b');hold on;
plot(1:max_d,Sdeltmean_inf,'-*c');hold on;
plot(1:max_d,Scor_inf,'-m');hold on;
plot(1:max_d,zeros(1,max_d),'r');
title('C_CMethod_inf');xlabel('Lag');
legend('S(t)平均值','ΔS(t)平均值','Scor_inf');
% 将数据保持下来
fid=fopen('Smean_inf.txt','w');
fprintf(fid,'%f\n',Smean_inf);
fclose(fid);
fid=fopen('Sdeltmean_inf.txt','w');
fprintf(fid,'%f\n',Sdeltmean_inf);
fclose(fid);
fid=fopen('Scor_inf.txt','w');
fprintf(fid,'%f\n',Scor_inf);
回复 9楼 guo2010 的帖子
李雅普诺夫指数计算中P是什么意思? 回复 mning 的帖子P是 时间序列的平均轨道周期
页:
[1]