<P>function fp=eqn_w3(v,xh);<BR>% xh=0.25;<BR>% v=0.90;</P>
<P>xhh=0.25;<BR>roub=19300;<BR>rou=3879;<BR>c11b=18.6*10^10;<BR>c44b=4.2*10^10;<BR>c11=6.13*10^10;<BR>c44=2.18*10^10;<BR>lambda=c11-2*c44;<BR>lambdab=c11b-2*c44b;<BR>mu=c44;<BR>mub=c44b;</P>
<P>l2m = lambda + 2 * mu;</P>
<P>l2mb = lambdab + 2 * mub;<BR>% 1.不带电极层区域 <BR>hhhh=10;<BR>H=0.002;</P>
<P><BR>beta1=0.83797530;<BR>beta2=0.40325621;</P>
<P>beta(1)=beta1;<BR>beta(2)=beta2;<BR>Beta1=0.84081852;<BR>Beta2=0.41956813;<BR>Beta(1)=Beta1;<BR>Beta(2)=Beta2;</P>
<P>% Integration of the thickness expansion functions for large depth h<BR>fact1 = 1 - 1 / exp(2 * pi * (beta1 + beta1) * hhhh);<BR>fact2 = 1 - 1 / exp(2 * pi * (beta2 + beta2) * hhhh);<BR>fact12= 1 - 1 / exp(2 * pi * (beta1 + beta2) * hhhh);<BR>f11 = fact1 / (beta1 + beta1);<BR>f12 = fact12 / (beta1 + beta2);<BR>f21 = f12;<BR>f22 = fact2 / (beta2 + beta2);</P>
<P>% Define the frequency matrix A(4, 4)<BR>syms k;<BR>A(1, 1) =f11 * (l2m * k^2 + mu * beta1^2 - mu * v^2 );<BR>A(1, 2) =f11 * beta1 * (lambda - mu) * k;<BR>A(1, 3) =f21 * (l2m * k^2 + mu * beta1 * beta2 - mu * v^2);<BR>A(1, 4) =f21 * (lambda * beta2 - mu * beta1) * k;<BR>A(2, 1) =f11 * beta1 * (lambda - mu) * k;<BR>A(2, 2) =f11 * (mu * k^2 + l2m * beta1^2 - mu * v^2 );<BR>A(2, 3) =f21 * (beta1 * lambda - beta2 * mu) * k;<BR>A(2, 4) =f21 * (mu * k^2 + l2m * beta1 * beta2 - mu * v^2);<BR>A(3, 1) =f21 * (l2m * k^2 + mu * beta1 * beta2 - mu * v^2);<BR>A(3, 2) =f21 * (beta1 * lambda - beta2 * mu) * k;<BR>A(3, 3) =f22 * (l2m * k^2 + mu * beta2^2 - mu * v^2);<BR>A(3, 4) =f22 * beta2 * (lambda - mu) * k;<BR>A(4, 1) =f21 * (lambda * beta2 - mu * beta1) * k;<BR>A(4, 2) =f21 * (mu * k^2 + l2m * beta1 * beta2 - mu * v^2);<BR>A(4, 3) =f22 * beta2 * (lambda - mu) * k;<BR>A(4, 4) =f22 * (mu * k^2 + l2m * beta2^2 - mu * v^2);</P>
<P>y=det(A);</P>
<P> kk=solve(y,k);</P>
<P> G(1)=numeric(real(kk(1)));<BR> G(2)=numeric(real(kk(3)));<BR> G(3)=numeric(imag(kk(5))*i);<BR> G(4)=numeric(imag(kk(7))*i);<BR> </P>
<P> <BR> </P>
<P>for n=1:4,<BR> d(1,1)=f11 * (l2m * G(n)^2 + mu * beta1^2 - mu * v^2 );<BR> d(1,2)=f11 * beta1 * (lambda - mu) * G(n) ;<BR> d(1,3)=f21 * (l2m * G(n)^2 + mu * beta1 * beta2 - mu * v^2);<BR> d(2,1)=f11 * beta1 * (lambda - mu) * G(n) ;<BR> d(2,2)=f11 * (mu * G(n)^2 + l2m * beta1^2 - mu * v^2 );<BR> d(2,3)=f21 * (beta1 * lambda - beta2 * mu) * G(n);<BR> d(3,1)=f21 * (l2m * G(n)^2 + mu * beta1 * beta2 - mu * v^2);<BR> d(3,2)=f21 * (beta1 * lambda - beta2 * mu) * G(n);<BR> d(3,3)=f22 * (l2m * G(n)^2 + mu * beta2^2 - mu * v^2);<BR> h(1,1)=-f21 * (lambda * beta2 - mu * beta1) * G(n);</P>
<P> h(2,1)=-f21 * (mu * G(n)^2 + l2m * beta1 * beta2 - mu * v^2);</P>
<P> h(3,1)=-f22 * beta2 * (lambda - mu) * G(n);</P>
<P>al(:,n)=d\h;</P>
<P>end;</P>
<P><BR>% new lame constants<BR>for m=1:2<BR> for n = 1 : 2<BR> lambdabb(m,n) = lambda * (1+2*H*(Beta(m)+Beta(n))*lambdab/lambda);<BR> mubb(m,n)=mu*(1+2*H*(Beta(m)+Beta(n))*mub/mu);<BR> l2mbb(m,n)=l2m*(1+2*H*(Beta(m)+Beta(n))*l2mb/l2m);<BR> rour(m,n)=(1+2*(Beta(m)+Beta(n))*H*roub/rou);<BR> end;<BR>end;</P>
<P><BR>% 基体厚度hhhh 电极厚度H (归一化后)<BR>% Integration of the thickness expansion functions for large depth h<BR>Fact1 = 1 - 1 / exp(2 * pi * (Beta1 + Beta1) * hhhh);<BR>Fact2 = 1 - 1 / exp(2 * pi * (Beta2 + Beta2) * hhhh);<BR>Fact12= 1 - 1 / exp(2 * pi * (Beta1 + Beta2) * hhhh);<BR>F11 = Fact1 / (Beta1 + Beta1);<BR>F12 = Fact12 / (Beta1 + Beta2);<BR>F21 = F12;<BR>F22 = Fact2 / (Beta2 + Beta2);</P>
<P>% Define the frequency matrix A(4, 4)<BR>syms K;<BR>AA(1, 1) = F11 * (l2mbb(1,1) * K^2 + mubb(1,1) * Beta1^2 - mu * v^2 * rour(1,1));<BR>AA(1, 2) = + F11 * Beta1 * (lambdabb(1,1) - mubb(1,1)) * K ;<BR>AA(1, 3) = F21 * (l2mbb(1,2) * K^2 + mubb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));<BR>AA(1, 4) = + F21 * (lambdabb(1,2) * Beta2 - mubb(1,2) * Beta1) * K;<BR>AA(2, 2) = F11 * (mubb(1,1) * K^2 + l2mbb(1,1) * Beta1^2 - mu * v^2 * rour(1,1));<BR>AA(2, 3) = + F21 * (Beta1 * lambdabb(1,2) - Beta2 * mubb(1,2)) * K;<BR>AA(2, 4) = F21 * (mubb(1,2) * K^2 + l2mbb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));<BR>AA(3, 3) = F22 * (l2mbb(2,2) * K^2 + mubb(2,2) * Beta2^2 - mu * v^2 * rour(2,2));<BR>AA(3, 4) = + F22 * Beta2 * (lambdabb(2,2) - mubb(2,2)) * K;<BR>AA(4, 4) = F22 * (mubb(2,2) * K^2 + l2mbb(2,2) * Beta2^2 - mu * v^2 * rour(2,2));<BR>AA(2, 1) = AA(1, 2);<BR>AA(3, 1) = AA(1, 3);<BR>AA(4, 1) = AA(1, 4);<BR>AA(4, 3) = AA(3, 4); <BR>AA(3, 2) = AA(2, 3);<BR>AA(4, 2) = AA(2, 4);<BR>yy = det(AA);<BR>% 并求振幅比AL(m,n)<BR>KK=solve(yy,K);<BR> GG(1)=numeric(real(KK(1)));<BR> GG(2)=numeric(real(KK(3)));<BR> GG(3)=numeric(imag(KK(5))*i);<BR> GG(4)=numeric(imag(KK(7))*i);</P>
<P>for n=1:4,<BR> dd(1,1)=F11 * (l2mbb(1,1) * GG(n)^2 + mubb(1,1) * Beta1^2 - mu * v^2 * rour(1,1));<BR> dd(1,2)=F11 * Beta1 * (lambdabb(1,1) - mubb(1,1)) * GG(n) ;<BR> dd(1,3)=F21 * (l2mbb(1,2) * GG(n)^2 + mubb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));<BR> dd(2,1)=F11 * Beta1 * (lambdabb(1,1) - mubb(1,1)) * GG(n);<BR> dd(2,2)=F11 * (mubb(1,1) * GG(n)^2 + l2mbb(1,1) * Beta1^2 - mu * v^2 * rour(1,1));<BR> dd(2,3)=F21 * (Beta1 * lambdabb(1,2) - Beta2 * mubb(1,2)) * GG(n);<BR> dd(3,1)=F21 * (l2mbb(1,2) * GG(n)^2 + mubb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));<BR> dd(3,2)=F21 * (Beta1 * lambdabb(1,2) - Beta2 * mubb(1,2)) * GG(n);<BR> dd(3,3)=F22 * (l2mbb(2,2) * GG(n)^2 + mubb(2,2) * Beta2^2 - mu * v^2 * rour(2,2));<BR> <BR> <BR> <BR> hh(1,1)=-F21 * (lambdabb(1,2) * Beta2 - mubb(1,2) * Beta1) * GG(n);</P>
<P> hh(2,1)=-F21 * (mubb(1,2) * GG(n)^2 + l2mbb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));</P>
<P> hh(3,1)=-F22 * Beta2 * (lambdabb(2,2) - mubb(2,2)) * GG(n);</P>
<P><BR> Al(:,n)=dd\hh;</P>
<P> end;</P>
<P><BR>for n=1:4<BR> ddd(1,1)=F11 * (l2mbb(1,1) * GG(n)^2 + mubb(1,1) * Beta1^2 - mu * v^2 * rour(1,1));<BR> ddd(1,2)=-F11 * Beta1 * (lambdabb(1,1) - mubb(1,1)) * GG(n) ;<BR> ddd(1,3)=F21 * (l2mbb(1,2) * GG(n)^2 + mubb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));<BR> ddd(2,1)=-F11 * Beta1 * (lambdabb(1,1) - mubb(1,1)) * GG(n);<BR> ddd(2,2)=F11 * (mubb(1,1) * GG(n)^2 + l2mbb(1,1) * Beta1^2 - mu * v^2 * rour(1,1));<BR> ddd(2,3)=-F21 * (Beta1 * lambdabb(1,2) - Beta2 * mubb(1,2)) * GG(n);<BR> ddd(3,1)=F21 * (l2mbb(1,2) * GG(n)^2 + mubb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));<BR> ddd(3,2)=-F21 * (Beta1 * lambdabb(1,2) - Beta2 * mubb(1,2)) * GG(n);<BR> ddd(3,3)=F22 * (l2mbb(2,2) * GG(n)^2 + mubb(2,2) * Beta2^2 - mu * v^2 * rour(2,2));<BR> hhh(1,1)=F21 * (lambdabb(1,2) * Beta2 - mubb(1,2) * Beta1) * GG(n);</P>
<P> hhh(2,1)=-F21 * (mubb(1,2) * GG(n)^2 + l2mbb(1,2) * Beta1 * Beta2 - mu * v^2 * rour(1,2));</P>
<P> hhh(3,1)=F22 * Beta2 * (lambdabb(2,2) - mubb(2,2)) * GG(n);</P>
<P><BR> Bl(:,n)=ddd\hhh;<BR>end;</P>
<P><BR>% 3.验证边界条件<BR>for m=1:4<BR>zterm=pi*GG(m)*xhh;<BR>ztermm=pi*G(m)*xhh;<BR>ztermmm=pi*G(m)*(xh+xhh);<BR>[sinQQ, cosQQ] = trigimag(zterm);<BR>[sinU,cosU]=trigimag(ztermm);<BR>[sinQ,cosQ]=trigimag(ztermmm);</P>
<P>T(1,m)=((F11*l2mbb(1,1)*Al(1,m)+F21*l2mbb(1,2)*Al(3,m))*GG(m)+(F11*lambdabb(1,1)*Beta1*Al(2,m)+F21*lambdabb(1,2)*Beta2))*cosQQ;<BR>T(1,m+4)=(-(F11*l2mbb(1,1)*Bl(1,m)+F21*l2mbb(1,2)*Bl(3,m))*GG(m)+(F11*lambdabb(1,1)*Beta1*Bl(2,m)+F21*lambdabb(1,2)*Beta2))*sinQQ;<BR>T(1,m+8)=-(l2m * (f11 * al(1, m) + f12 * al(3, m))*G(m) + lambda * (f11 * beta1 * al(2, m) + f12 * beta2)) * cosU;</P>
<P>T(2,m)=((-F11*mubb(1,1)*Al(2,m)-F21*mubb(1,2))*GG(m)+F11*mubb(1,1)*Beta1*Al(1,m)+F21*mubb(1,2)*Beta2*Al(3,m))*sinQQ;<BR>T(2,m+4)=((F11*mubb(1,1)*Bl(2,m)+F21*mubb(1,2))*GG(m)+F11*mubb(1,1)*Beta1*Bl(1,m)+F21*mubb(1,2)*Beta2*Bl(3,m))*cosQQ;<BR>T(2,m+8)=-mu*((-f11 * al(2, m)-f21)*G(m) + f11 * beta1 * al(1, m) + f21 * beta2* al(3, m)) * sinU;<BR> </P>
<P><BR>T(3,m)=((F21*l2mbb(1,2)*Al(1,m)+F22*l2mbb(2,2)*Al(3,m))*GG(m)+(F21*lambdabb(1,2)*Beta1*Al(2,m)+F22*lambdabb(2,2)*Beta2))*cosQQ;<BR>T(3,m+4)=(-(F21*l2mbb(1,2)*Bl(1,m)+F22*l2mbb(2,2)*Bl(3,m))*GG(m)+(F21*lambdabb(1,2)*Beta1*Bl(2,m)+F22*lambdabb(2,2)*Beta2))*sinQQ;<BR>T(3,m+8)=-(l2m *(f21 * al(1,m)+f22*al(3,m))*G(m)+lambda*(f21 * beta1 * al(2, m) + f22 * beta2)) * cosU;</P>
<P> </P>
<P>T(4,m)=((-F21*mubb(1,2)*Al(2,m)-F22*mubb(2,2))*GG(m)+F21*mubb(1,2)*Beta1*Al(1,m)+F22*mubb(2,2)*Beta2*Al(3,m))*sinQQ;<BR>T(4,m+4)=((F21*mubb(1,2)*Bl(2,m)+F22*mubb(2,2))*GG(m)+F21*mubb(1,2)*Beta1*Bl(1,m)+F22*mubb(2,2)*Beta2*Bl(3,m))*cosQQ;<BR>T(4,m+8)=-mu*((-f21 * al(2, m)-f22)*G(m) + f21 * beta1 * al(1, m) + f22 * beta2* al(3, m)) * sinU;</P>
<P><BR>T(5,m)=Al(1,m)*sinQQ;<BR>T(5,m+4)=Bl(1,m)*cosQQ;<BR>T(5,m+8)=-al(1,m)*sinU;</P>
<P><BR>T(6,m)=Al(2,m)*cosQQ;<BR>T(6,m+4)=Bl(2,m)*sinQQ;<BR>T(6,m+8)=-al(2,m)*cosU;</P>
<P>T(7,m)=Al(3,m)*sinQQ;<BR>T(7,m+4)=Bl(3,m)*cosQQ;<BR>T(7,m+8)=-al(3,m)*sinU;</P>
<P> <BR>T(8,m)=cosQQ;<BR>T(8,m+4)=sinQQ;<BR>T(8,m+8)=-cosU;</P>
<P>T(9,m)=0;<BR>T(9,m+4)=0;<BR>T(9,m+8)=-al(1,m)*sinQ;</P>
<P>T(10,m)=0;<BR>T(10,m+4)=0;<BR>T(10,m+8)=-al(3,m)*sinQ;</P>
<P>T(11,m)=0;<BR>T(11,m+4)=0;<BR>T(11,m+8)=-mu*((-f11 * al(2, m)-f21)*G(m) + f11 * beta1 * al(1, m) + f21 * beta2* al(3, m)) * sinQ;</P>
<P><BR>T(12,m)=0;<BR>T(12,m+4)=0;<BR>T(12,m+8)=-mu*((-f21 * al(2, m)-f22)*G(m) + f21 * beta1 * al(1, m) + f22 * beta2* al(3, m)) * sinQ;<BR>end </P>
<P>fp=numeric(det(T))</P> |