声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1330|回复: 3

[综合讨论] 请教一下matlab解非线性方程组的问题

[复制链接]
发表于 2011-8-30 16:05 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
本帖最后由 baverloll 于 2011-8-30 16:07 编辑

我在学习振动力学的时候有个问题,描述如下:
非线性方程组是其实是由两个非线性方程加两个不等式限制所组成的。
方程一
V=sqrt((A1*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t1))*cos(Wn*sqrt(1-At^2)*t1)+A2*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t2))*cos(Wn*sqrt(1-At^2)*t2)+A3*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t3))*cos(Wn*sqrt(1-At^2)*t3)+A4*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t4))*cos(Wn*sqrt(1-At^2)*t4)+A5*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t5))*cos(Wn*sqrt(1-At^2)*t5))^2+(A1*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t1))*sin(Wn*sqrt(1-At^2)*t1)+A2*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t2))*sin(Wn*sqrt(1-At^2)*t2)+A3*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t3))*sin(Wn*sqrt(1-At^2)*t3)+A4*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t4))*sin(Wn*sqrt(1-At^2)*t4)+A5*Wn/sqrt(1-At^2)*exp(-At*Wn*(t-t5))*sin(Wn*sqrt(1-At^2)*t5))^2)=5;
方程二(整个方程是上个方程关于Wn的偏导数):
1/2/((A1*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t1))*cos(Wn*(1-At^2)^(1/2)*t1)+A2*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t2))*cos(Wn*(1-At^2)^(1/2)*t2)+A3*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t3))*cos(Wn*(1-At^2)^(1/2)*t3)+A4*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t4))*cos(Wn*(1-At^2)^(1/2)*t4)+A5*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t5))*cos(Wn*(1-At^2)^(1/2)*t5))^2+(A1*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t1))*sin(Wn*(1-At^2)^(1/2)*t1)+A2*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t2))*sin(Wn*(1-At^2)^(1/2)*t2)+A3*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t3))*sin(Wn*(1-At^2)^(1/2)*t3)+A4*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t4))*sin(Wn*(1-At^2)^(1/2)*t4)+A5*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t5))*sin(Wn*(1-At^2)^(1/2)*t5))^2)^(1/2)*(2*(A1*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t1))*cos(Wn*(1-At^2)^(1/2)*t1)+A2*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t2))*cos(Wn*(1-At^2)^(1/2)*t2)+A3*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t3))*cos(Wn*(1-At^2)^(1/2)*t3)+A4*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t4))*cos(Wn*(1-At^2)^(1/2)*t4)+A5*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t5))*cos(Wn*(1-At^2)^(1/2)*t5))*(A1/(1-At^2)^(1/2)*exp(-At*Wn*(t-t1))*cos(Wn*(1-At^2)^(1/2)*t1)-A1*Wn/(1-At^2)^(1/2)*At*(t-t1)*exp(-At*Wn*(t-t1))*cos(Wn*(1-At^2)^(1/2)*t1)-A1*Wn*exp(-At*Wn*(t-t1))*sin(Wn*(1-At^2)^(1/2)*t1)*t1+A2/(1-At^2)^(1/2)*exp(-At*Wn*(t-t2))*cos(Wn*(1-At^2)^(1/2)*t2)-A2*Wn/(1-At^2)^(1/2)*At*(t-t2)*exp(-At*Wn*(t-t2))*cos(Wn*(1-At^2)^(1/2)*t2)-A2*Wn*exp(-At*Wn*(t-t2))*sin(Wn*(1-At^2)^(1/2)*t2)*t2+A3/(1-At^2)^(1/2)*exp(-At*Wn*(t-t3))*cos(Wn*(1-At^2)^(1/2)*t3)-A3*Wn/(1-At^2)^(1/2)*At*(t-t3)*exp(-At*Wn*(t-t3))*cos(Wn*(1-At^2)^(1/2)*t3)-A3*Wn*exp(-At*Wn*(t-t3))*sin(Wn*(1-At^2)^(1/2)*t3)*t3+A4/(1-At^2)^(1/2)*exp(-At*Wn*(t-t4))*cos(Wn*(1-At^2)^(1/2)*t4)-A4*Wn/(1-At^2)^(1/2)*At*(t-t4)*exp(-At*Wn*(t-t4))*cos(Wn*(1-At^2)^(1/2)*t4)-A4*Wn*exp(-At*Wn*(t-t4))*sin(Wn*(1-At^2)^(1/2)*t4)*t4+A5/(1-At^2)^(1/2)*exp(-At*Wn*(t-t5))*cos(Wn*(1-At^2)^(1/2)*t5)-A5*Wn/(1-At^2)^(1/2)*At*(t-t5)*exp(-At*Wn*(t-t5))*cos(Wn*(1-At^2)^(1/2)*t5)-A5*Wn*exp(-At*Wn*(t-t5))*sin(Wn*(1-At^2)^(1/2)*t5)*t5)+2*(A1*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t1))*sin(Wn*(1-At^2)^(1/2)*t1)+A2*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t2))*sin(Wn*(1-At^2)^(1/2)*t2)+A3*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t3))*sin(Wn*(1-At^2)^(1/2)*t3)+A4*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t4))*sin(Wn*(1-At^2)^(1/2)*t4)+A5*Wn/(1-At^2)^(1/2)*exp(-At*Wn*(t-t5))*sin(Wn*(1-At^2)^(1/2)*t5))*(A1/(1-At^2)^(1/2)*exp(-At*Wn*(t-t1))*sin(Wn*(1-At^2)^(1/2)*t1)-A1*Wn/(1-At^2)^(1/2)*At*(t-t1)*exp(-At*Wn*(t-t1))*sin(Wn*(1-At^2)^(1/2)*t1)+A1*Wn*exp(-At*Wn*(t-t1))*cos(Wn*(1-At^2)^(1/2)*t1)*t1+A2/(1-At^2)^(1/2)*exp(-At*Wn*(t-t2))*sin(Wn*(1-At^2)^(1/2)*t2)-A2*Wn/(1-At^2)^(1/2)*At*(t-t2)*exp(-At*Wn*(t-t2))*sin(Wn*(1-At^2)^(1/2)*t2)+A2*Wn*exp(-At*Wn*(t-t2))*cos(Wn*(1-At^2)^(1/2)*t2)*t2+A3/(1-At^2)^(1/2)*exp(-At*Wn*(t-t3))*sin(Wn*(1-At^2)^(1/2)*t3)-A3*Wn/(1-At^2)^(1/2)*At*(t-t3)*exp(-At*Wn*(t-t3))*sin(Wn*(1-At^2)^(1/2)*t3)+A3*Wn*exp(-At*Wn*(t-t3))*cos(Wn*(1-At^2)^(1/2)*t3)*t3+A4/(1-At^2)^(1/2)*exp(-At*Wn*(t-t4))*sin(Wn*(1-At^2)^(1/2)*t4)-A4*Wn/(1-At^2)^(1/2)*At*(t-t4)*exp(-At*Wn*(t-t4))*sin(Wn*(1-At^2)^(1/2)*t4)+A4*Wn*exp(-At*Wn*(t-t4))*cos(Wn*(1-At^2)^(1/2)*t4)*t4+A5/(1-At^2)^(1/2)*exp(-At*Wn*(t-t5))*sin(Wn*(1-At^2)^(1/2)*t5)-A5*Wn/(1-At^2)^(1/2)*At*(t-t5)*exp(-At*Wn*(t-t5))*sin(Wn*(1-At^2)^(1/2)*t5)+A5*Wn*exp(-At*Wn*(t-t5))*cos(Wn*(1-At^2)^(1/2)*t5)*t5))=0;
另外还有两个不等式:
不等式一
sqrt((A1*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t1))*cos(0.85*Wn*sqrt(1-At^2)*t1)+A2*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t2))*cos(0.85*Wn*sqrt(1-At^2)*t2)+A3*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t3))*cos(0.85*Wn*sqrt(1-At^2)*t3)+A4*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t4))*cos(0.85*Wn*sqrt(1-At^2)*t4)+A5*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t5))*cos(0.85*Wn*sqrt(1-At^2)*t5))^2+(A1*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t1))*sin(0.85*Wn*sqrt(1-At^2)*t1)+A2*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t2))*sin(0.85*Wn*sqrt(1-At^2)*t2)+A3*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t3))*sin(0.85*Wn*sqrt(1-At^2)*t3)+A4*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t4))*sin(0.85*Wn*sqrt(1-At^2)*t4)+A5*0.85*Wn/sqrt(1-At^2)*exp(-At*0.85*Wn*(t-t5))*sin(0.85*Wn*sqrt(1-At^2)*t5))^2)<0.005;
不等式二
sqrt((A1*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t1))*cos(1.15*Wn*sqrt(1-At^2)*t1)+A2*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t2))*cos(1.15*Wn*sqrt(1-At^2)*t2)+A3*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t3))*cos(1.15*Wn*sqrt(1-At^2)*t3)+A4*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t4))*cos(1.15*Wn*sqrt(1-At^2)*t4)+A5*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t5))*cos(1.15*Wn*sqrt(1-At^2)*t5))^2+(A1*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t1))*sin(1.15*Wn*sqrt(1-At^2)*t1)+A2*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t2))*sin(1.15*Wn*sqrt(1-At^2)*t2)+A3*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t3))*sin(1.15*Wn*sqrt(1-At^2)*t3)+A4*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t4))*sin(1.15*Wn*sqrt(1-At^2)*t4)+A5*1.15*Wn/sqrt(1-At^2)*exp(-At*1.15*Wn*(t-t5))*sin(1.15*Wn*sqrt(1-At^2)*t5))^2)<0.005;
我的想法就是用solve函数将上面两个等式的所有解带入到下面那两个不等式中,但是前面两个方程用solve函数解不出来,提示是empty sym,还有后面那两个不等式如果改成等式,全部等于0又怎样解?搞了很长时间不知道哪里有问题,请各位指点一下,谢谢了!!!
回复
分享到:

使用道具 举报

 楼主| 发表于 2011-8-30 19:41 | 显示全部楼层
有人有思路或者经验吗?急啊!!!
发表于 2011-9-4 09:32 | 显示全部楼层
求解非线性方程组
http://forum.vibunion.com/forum- ... fromuid-172740.html
第一页的一个帖子,我不太懂,不知道能解决不

评分

1

查看全部评分

发表于 2011-9-4 11:27 | 显示全部楼层
:@L式子这样复杂, 不知有多少看官会细看!? 个人水平/时间是有限, 所以...
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-11 06:04 , Processed in 0.080618 second(s), 23 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表