声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2587|回复: 1

[综合] (转)matlab中的xcorr 自相关函数

[复制链接]
发表于 2011-10-4 09:32 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
Matlab中用于计算自相关函数的指令是xcorr.比如矩阵A=[1 2 3];

    xcorr(A)=3.0000 8.0000 14.0000 8.0000 3.0000

自相关函数是信号间隔的函数,间隔有正负间隔,所以n个长度的信号,有2n-1个自相关函数值,分别描述的是不同信号间隔的相似程度。

     比如,上面的矩阵,最后得到5个结果,其中第三个是自己和自己相乘,最后相加的结果,值最大1*1+2*2+3*3=14。而第二个和第四个分别是间隔正负1的结果也就是1*2+2*3=8,2*1+3*2=8。第1个和第五个分别是间隔正负2,也就是1*3=3,3*1=3。
http://www.zdh1909.com/UploadFiles/2011-01/lpz/20110118123729875.jpg
xcorr求出的结果仅仅是x(n)*x(n+m)并对其求和,并没有除以前面的N或者是N-|K|。不用这个函数也可以求
for k=0:1:p
    t5=0;
    for n=0:1:N-k-1
        t5=t5+conj(x(n+1))*x(n+1+k);
    end
    Rxx(k+1)=t5/N;
end
也可以实现,其中N为序列长度此处并未求出全部的自相关序列,只求了间隔从0到p的。
我们令Rx=xcorr(x);
则Rxx(k+1)=Rx(N+k)/N得到。
下面是摘自一篇博文:

1. 首先说说自相关和互相关的概念。
这个是信号分析里的概念,他们分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号 x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度;互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效.
事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。
那么,如何在matlab中实现这两个相关并用图像显示出来呢?
dt=.1;
t=[0:dt:100];
x=cos(t);
[a,b]=xcorr(x,'unbiased');
plot(b*dt,a)
上面代码是求自相关函数并作图,对于互相关函数,稍微修改一下就可以了,即把
[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbiased');便可。
2. 实现过程:
      在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。下面是检验两者结果相同的代码:
dt=.1;
t=[0:dt:100];
x=3*sin(t);
y=cos(3*t);
subplot(3,1,1);
plot(t,x);
subplot(3,1,2);
plot(t,y);
[a,b]=xcorr(x,y);
subplot(3,1,3);
plot(b*dt,a);
yy=cos(3*fliplr(t)); % or use: yy=fliplr(y);
z=conv(x,yy);
pause;
subplot(3,1,3);
plot(b*dt,z,'r');
即在xcorr中不使用scaling。
3. 其他相关问题:
1) 相关程度与相关函数的取值有什么联系?
  相关系数只是一个比率,不是等单位量度,无什么单位名称,也不是相关的百分数,一般取小数点后两位来表示。相关系数的正负号只表示相关的方向,绝对值表示相关的程度。因为不是等单位的度量,因而不能说相关系数0.7是0.35两倍,只能说相关系数为0.7的二列变量相关程度比相关系数为0.35的二列变量相关程度更为密切和更高。也不能说相关系数从0.70到0.80与相关系数从0.30到0.40增加的程度一样大。
对于相关系数的大小所表示的意义目前在统计学界尚不一致,但通常按下是这样认为的:
相关系数          相关程度
0.00-±0.30       微相关
±0.30-±0.50   实相关
±0.50-±0.80  显著相关
±0.80-±1.00  高度相关
matlab计算自相关函数autocorr和xcorr有什么不一样的?xcorr是没有将均值减掉做的相关,autocorr则是减掉了均值。

评分

1

查看全部评分

回复
分享到:

使用道具 举报

发表于 2013-5-17 11:46 | 显示全部楼层
学习了
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-25 09:31 , Processed in 0.059363 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表