参考文献
[1] Guckenheimer J, Holmes P. Nonlinear Oscillations , Dynamical Systems , and Bifurcations of Vector Fields [M] , New York : Springer-Verlag , 1983
[2] Ott E. Chaos in Dynamical Systems [M] , Cambridge University Press , 1993
[3] Moon FC. Chaotic and Fractal Dynamics [M] , New York : John Wiley & Sons, 1992
[4] Wiggins S. Global bifurcations and chaos: analytical methods [M] , Beijing: Springer-Verlag , 1990
[5] 刘曾荣. 混沌的微扰判据[M] , 上海: 上海科技教育, 1994
[6] Smale S. Differentiable dynamical systems [J] , Bull. Amer. Math. Soc. , 1957, 73 : 747-753
[7] Parker TS, Chua LO. Practical numerical algorithms for chaotic systems [M], Springer-Verlag , New York , 1989
[8] Hsu CS. A theory of cell-to-cell mapping dynamical systems [J] , J. Applied Mechanics , 1980 , 147 : 931-939
[9] Hsu CS. Cell-to-Cell Mapping : a Method of Global Analysis for Nonlinear Systems [M] , New York: Springer-Verlag , 1987
[10] Hsu CS. Global analysis by cell mapping [J] , Int. J. Bifurcation and Chaos, 1992 , 2(4) : 727-771
[11] Hsu CS. Global analysis of dynamical systems using posets and digraphs [J], Int. J. Bifurcation and Chaos , 1995 , 5 : 1085-1118
[12] Hong Ling , Xu JianXue. Crises and chaotic transients studied by the generalized cell mapping digraph method [J] , Phys. Lett. A , 1999 , 262 : 361-375
[13] Hong Ling , Xu JianXue. Discontinuous bifurcations of chaotic attractors in forced oscillators by generalized cell mapping digraph (GCMD) method [J], Int. J. Bifurcation and Chaos, 2001, 11: 723-736
[14] Tongue BH, Gu KQ. Interpolated cell mapping of dynamical systems [J] , J. Applied Mechanics, 1988 , 55 : 461-466
[15] Golat M, Flashner H. A New Methodology for the Analysis of Periodic Systems [J] , Nonlinear Dynamics , 2002 , 28 : 29-51
[16] Jiang Jun, Xu Jianxue. A method of point mapping under cell reference for global analysis of nonlinear dynamical systems [J] , Phys. Lett. A , 1994 , 188: 137-145
[17] 凌复华. 非线性动力学系统的数值研究[M] , 上海: 上海交通大学出版社, 1989
[18] Hsu CS. A generalized theory of cell-to-cell mapping for nonlinear dynamical systems [J], J. Applied Mechanics , 1981 , 48 : 634-642
[19] Bestle D , Kreuzer E. Modification and extension of an algorithm for generalized cell mapping [J] , Computer Methods in Applied Mechanics and Engineering, 1986, 59: 1-9
[20] Levitas J. Global stability analysis of fuzzy controllers using cell mapping methods [J], Fuzzy Sets and Systems, 1999, 106: 85-97
[21] 洪灵,徐健学. 全局分析的广义胞映射图论方法[J], 力学学报, 1999, 31(6): 724-730
[22] 洪灵,徐健学. 两参量平面上双重激变尖点研究[J], 物理学报, 2002, 51(12): 2694-2701
[23] Hong Ling , Sun Jian-Qiao. Bifurcations of fuzzy nonlinear dynamical systems [J], Communications in Nonlinear Science and Numerical Simulation, 2006, 11: 1-12
[24] Hong Ling , Sun Jian-Qiao. Bifurcations of forced oscillators with fuzzy uncertainties by the generalized cell mapping method [J] , Chaos Solitions & Fractals , 2006 , 27 : 895-904
[25] Hong Ling , Sun Jian-Qiao. Codimension two bifurcations of nonlinear systems driven by fuzzy noise [J] , Physica D , 2006 , 213 : 181-189
[26] Osipenko G. Dynamical systems , graphs, and algorithms [M] , Springer-Verlag , Berlin Heidelberg , 2007
[27] Osipenko G , Ayter S , Kobyakov S. The structure matrix of dynamical system, Tools for mathematical modeling [J] , Mathematical research , 2001 , 8 : 06-114
[28] Osipenko G , Pehlivan S. Verification of structural stability , Tools for mathematical modeling [J], Mathematical research. 2001 , 8 : 115-126
[29] Osipenko G. Calculation of Lyapunov exponents by applied symbolic dynamics [J], International Journal of Nonlinear Sciences and Numerical Simulation, 2001, 2(1) : 53-72
[30] Osipenko G. Spectrum of a dynamical system and applied symbolic dynamics[J] , Journal of Mathematical Analysis and Applications , 2000, 252 : 587-616
[31] Osipenko G , Campbell S. Applied Symbolic Dynamics : attractors and filtrations [J] , Discrete and Continuous Dynamical Systems , 1999 , 5(1-2): 43-60
[32] Dellnitz M , Hohmann A. A subdivision algorithm for the computation of unstable manifolds and global attractors [J] , Numerische Mathematik , 1997, 75 : 293-317
[33] Dellnitz M , Junge O. Set Oriented Numerical Methods for Dynamical Systems [A] , Handbook of Dynamical Systems II : Towards Applications , 2002 , World Scientific : 221-264
[34] Dellnitz M, Froyland G, Junge O. The algorithms behind GAIO - Set oriented numerical methods for dynamical systems [A], Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, 2001, 145-174, Springer
[35] Dellnitz M , Junge O. An adaptive subdivision technique for the approximation of attractors and invariant measures [J] , Comput. Visual. Sci. 1998, 1: 63 – 68
[36] Dellnitz M , Junge O. Almost invariant sets in Chua's circuit [J] , Int. J. Bifurcation and Chaos 1997, 7(11): 2475-2485
[37] Mehta PG , Hessel-von Molo M, Dellnitz M. Symmetry of Attractors and the Perron-Frobenius Operator [J] , Journal of Difference Equations and Applications , 2006 , 12(11) : 1147-1178
[38] Sertl S , Dellnitz M. Global Optimization using a Dynamical Systems Approach [J] , Journal of Global Optimization , 2006 , 34(4) : 569-587
[39] Dellnitz M , Junge O , Koon WS , Lekien F , Lo MW , Marsden JE , Padberg K , Preis R , Ross SD , Thiere B. Transport in Dynamical Astronomy and Multibody Problems [J], Int. J. Bifurcation and Chaos , 2005 , 15(3) : 699-727
[40] Dellnitz M , Schütze O , Hestermeyer T. Covering Pareto Sets by Multilevel Subdivision Techniques [J] , Journal of Optimization , Theory and Applications, 2005 , 124(1) : 113-136
[41] Day S , Junge O , Mischaikow K. A Rigorous Numerical Method for the Global Analysis of Infinite Dimensional Discrete Dynamical Systems [J] , SIAM Journal on Applied Dynamical Systems, 2004 , 3(2) : 117-160
[42] Junge O , Osinga H. A set oriented approach to global optimal control [J], ESAIM : Control , Optimisation and Calculus of Variations , 2004 , 3(2) : 259-270
[43] Froyland G , Dellnitz M. Detecting and Locating Near-Optimal Almost Invariant Sets and Cycles [J], SIAM Journal on Scientific Computing , 2003, 24(6) : 1839-1863
[44] Dellnitz M , Schutze O , Sertl S. Finding Zeros by Multilevel Subdivision Techniques [J], Journal of Numerical Analysis , 2002 , 22(2) : 167-185
[45] Dellnitz M , Junge O , Thiere B. The Numerical Detection of Connecting Orbits [J] , Discrete and Continuous Dynamical Systems - Series B, 2001, 1(1) : 125-135
[46] Froyland G , Junge O , Ochs G. Rigorous computation of topological entropy with respect to a finite partition [J] , Physica D , 2001 , 154 : 68-84
[47] Junge O. An adaptive subdivision technique for the approximation of attractors and invariant measures : Proof of convergence [J] , Dynamical Systems, 2001 , 16(3) : 213-222
[48] 贺群, 徐伟, 李爽, 肖玉柱. 图胞映射的一种改进方法, 物理学报, 2008 , 57(2): 743-748
[49] 贺群, 徐伟, 李爽, 肖玉柱. 基于复合胞化空间的图胞映射方法, 物理学报, 2008 , 57(7)
[50] Xiaole Yue, Wei Xu, Stochastic bifurcation of an asymmetric single-well potential Duffing oscillator under bounded noise excitation, International Journal of Bifurcation and Chaos 20, 2010, 3359-3371.
[51] Wei Xu, Xiaole Yue, Global analyses of crisis and stochastic bifurcation in the hardening Helmholtz-Duffing oscillator, SCIENCE China Technological Sciences 53, 2010, 664-673.
[52] Qun He, Wei Xu, Haiwu Rong, Tong Fang, Stochastic bifurcation in Duffing-van der Pol oscillators, Physica A 338, 2004, 319-334.
[53] Wei Xu, Qun He, Tong Fang, Haiwu Rong, Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise, International Journal of Non-Linear Mechanics 39, 2004, 1473-1479.
[54] Wei Xu, Qun He, Tong Fang, Haiwu Rong, Global analysis of stochastic bifurcation in Duffing system, International Journal of Bifurcation and Chaos 13, 2003, 3115-3123.
[55] Zufiria PJ ,Guttalu RS. The Adjoining Cell Mapping and Its Recursive Unraveling , part one : Description of Adaptive and Recursive Algorithms [J] , Nonlinear dynamics , 1993 , 4 : 207-226
[56] Zufiria PJ ,Guttalu RS. The Adjoining Cell Mapping and Its Recursive Unraveling , part two : Application to selected problems [J], Nonlinear dynamics, 1993 , 4 : 309-336
[57] Sun JQ, Hsu CS. The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation[J], J. Applied Mechanics , 1990 , 57 : 1018-1025
[58] Levitas J, Weller T , Singer J. Poincare-like simple cell mapping for nonlinear dynamical systems [J] , J. Sound and Vibration , 1994 , 176 : 641-662
[59] Levitas J, Weller T. Poincare linear interpolated cell mapping : method for global analysis of oscillating systems [J] , J. Applied Mechanics , 1995 , 62 , 489-495
[60] Hsu CS , Chiu HM. Global analysis of a system with multiple responses including a strange attractor [J] , J. Sound and Vibration , 1987 , 114 : 203-218
[61] Zhu WH, Wu QT. New methods of determining the strange attractor by generalized cell mapping approach [J], Commun. Appl. Numer. Methods, 1988 , 4 : 543-548
[62] Jiang Jun , Xu Jianxue. An iterative method of point mapping under cell reference for the global analysis of nonlinear dynamical systems [J] , J. Sound and Vibration, 1996, 194: 605-621
[63] Jiang Jun , Xu Jianxue. An iterative method of point mapping under cell reference for the global analysis : theory and a multiscale reference technique[J] , Nonlinear Dynamics , 1998, 15: 103-114
[64] Guder R, Dellnitz M, Kreuzer E. An adaptive method for the approximation of the generalized cell mapping[J], Chaos, Solitons and Fractals, 1997, 8(4): 525-534
[65] 文成秀, 姚玉玺, 闻邦椿. 动力系统的点映射-胞映射综合法[J], 振动工程学报, 1997, 10(4) : 413-419
[66] Tongue BH , Gu KQ. A higher order method of mapping[J] , J. Sound and Vibration , 1988, 125 : 169-179
[67] Tongue BH , Gu KQ. A theoretic basis for interpolated cell mapping[J], SIAM J. Applied Mathematics , 1988 , A8 : 1206-1212
[68] Tongue BH. On obtaining global nonlinear system characteristics through interpolated cell mapping [J] , Physica D , 1987 , 28 : 401-408
[69] Tongue BH ,Gu KQ. A higher order method of interpolated cell mapping [J], J. Sound and Vibration , 1988 , 125 : 169-179
[70] Whitf MT , Tongue RH. Application of interpolated cell mapping to analysis of the Lorenz equations [J] , J. Sound and Vibration , 1995 , 188(2) : 209-226
[71] Hsu C. S., A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications, 1985, 46 (4), 547-569.
[72] Bursal F. H., Hsu C. S., Application of a cell-mapping method to optimal control problems, International Journal of Control, 1989, 49, 1505-1522.
[73] Flashner H., Burns T. F., Spacecraft momentum unloading: the cell mapping approach, Journal of Guidance, Control and Dynamics 1990, 13, 89-98.
[74] Zhu W. H. and Leu M. C., Planning optimal robot trajectories by cell mapping, in Proceedings of Conference on Robotics and Automation, IEEE, New York, 1990, pp. 1730-1735.
[75] Wang F. Y., Lever P. J. A., A cell mapping method for general optimum trajectory planning of multiple robotic arms, Robotics and Autonomous Systems 1994, 12, 15-27.
[76] Yen J. Y., Computer disk file track accessing controller design based upon cell to cell mapping, in Proceedings of the American Control Conference, AACC, 1992, pp. 216-220.
[77] Crespo L. G., Sun, J. Q., Solution of fixed final state optimal control problems via simple cell mapping’, Nonlinear Dynamics 2000, 23, 391-403.
[78] Crespo L. G., Sun J. Q., Optimal control of target tracking via simple cell mapping, Journal of Guidance, Control and Dynamics 2000, 24, 1029-1031.
[79] Crespo L.G., Sun J.Q. Fixed Final Time Optimal Control via Simple Cell Mapping, Nonlinear Dynamics, 2003, 31, 119-131.
[80] Crespo L.G., Sun J.Q. Stochastic Optimal Control of Nonlinear Dynamic Systems via Bellman’s Principle and Cell Mapping, Automatica, 2003, 39, 2109-2114.
[81] Crespo L.G., Sun J.Q. Stochastic Optimal Control of Nonlinear Dynamic Systems via Short-Time Gaussian Approximation and Cell Mapping, Nonlinear Dynamics, 2002, 28, 323-342.
[82] Crespo L.G., Sun J.Q. Optimal Control of Populations of Competing Species, Nonlinear Dynamics, 2002, 27, 197-210.
[83] Chen Y. Y., Tsao T. C., Description of the dynamical behavior of fuzzy systems. IEEE Transactions on Systems, Man and Cybernetics 1989, 19 (4), 745-755.
[84] Yen J. Y., Chao W. C., Lu, S. S., Fuzzy cell mapping method for a sub-optimal control implementation, Control Engineering Practice, 1994, 2, 247-254.
[85] Smith S. M., Comer D. J., 1990, Self-tuning of a fuzzy logic controller using a cell state space algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Vol. 6. pp. 445-450.
[86] Smith S. M., Corner D. J., An algorithm for automated fuzzy logic controller tuning, in Proceedings of IEEE International Conference on Fuzzy Systems, IEEE, New York, 1992, pp. 615-622.
[87] Song F., Smith S. M., 2000, Cell state space based incremental best estimate directed search algorithm for Takagi-Sugeno type fuzzy logic controller automatic optimization. In: Proceedings of the 9thIEEE International Conference on Fuzzy Systems. Vol. 1. San Antonio, Texas, pp. 19-24.
[88] Song F., Smith S. M., Rizk C. G., 1999, Fuzzy logic controller design methodology for 4D systems with optimal global performance using enhanced cell state space based best estimate directed search method. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Vol. 6. Tokyo, Japan, pp. 138-143.
[89] Song F., Smith S. M., Rizk C. G., 1999, Optimized fuzzy logic controller design for 4D systems using cell state space technique with reduced mapping error. In: Proceedings of the IEEE International Fuzzy Systems Conference. Vol. 2. Seoul, South Korea, pp. 691-696.
[90] Edwards, D., Choi, H. T., 1997. Use of fuzzy logic to calculate the statistical properties of strange attractors in chaotic systems. Fuzzy Sets and Systems 88 (2), 205-217.
[91] Sun J. Q., Hsu C. S., Global analysis of nonlinear dynamical systems with fuzzy uncertainties by the cell mapping method, Computer Methods in Applied Mechanics and Engineering 1990, 83, 109-120.
[92] Baglio S., Fortuna L., and Presti M. L., Cube collect: A new strategy to make efficient the classical cell-to-cell algorithm, in Proceedings of the American Control Conference, Vol. 5, IEEE, New York, 1995, pp. 3043-3045.
[93] Zufiria P. J., Guttalu R. S., Adjoining cell mapping and its recursive unraveling, Part I: Description of adaptive and recursive algorithms, Nonlinear Dynamics 1993, 3, 207-225.
[94] Sun J. Q. Random Vibrations of Nonlinear Systems Based upon the Cell State Space Concept, 1988, Ph.D. Dissertation, Dept. of Mechanical Engineering, University of California, Berkeley.
感谢国家自然科学基金(11172233,10932009)的支持
|