声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2201|回复: 0

[分形与混沌] 计算混沌序列最大Lyapunov指数

[复制链接]
发表于 2016-3-7 14:42 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
对离散动力系统,或者说是非线性时间序列,往往不需要计算出所有的Lyapunov指数,通常只需计算出其最大的Lyapunov指数即可。“1983年,格里波基证明了只要最大Lyapunov指数大于零,就可以肯定混沌的存在”。
    目前常用的计算混沌序列最大Lyapunov指数的方法主要有以下几种:
(1)由定义法延伸的Nicolis方法
(2)Jacobian方法
(3)Wolf方法
(4)P-范数方法
(5)小数据量方法
    其中以Wolf方法和小数据量方法应用最为广泛,也最为普遍。

    在计算LE之前,都要求对时间序列进行重构相空间,重构相空间的优良对于最大LE的计算精度影响非常大!因此重构相空间的几个参数的确定就非常重要。
1.Wolf方法
    自己采用的是C-C方法求取计算嵌入维和延迟时间,然后重构相空间,最后用最小二乘法拟和求最大LE。
2.小数据量方法
   
重构相空间需要确定的参数有:嵌入维、延迟时间等
其中:
(1)时间延迟
主要推荐两种方法――自相关函数法、C-C方法
    自相关函数法――对一个混沌时间序列,可以先写出其自相关函数,然后作出自相关函数关于时间t的函数图像。根据数值试验结果,当自相关函数下降到初始值的1-1/e时,所得的时间t即为重构相空间的时间延迟。
    C-C方法――可以同时计算出时间延迟和时间窗口。

(2)平均周期
(3)嵌入维数
    目前嵌入维数的主要计算方法是采用Grassberger和Procaccia提出的G-P算法计算出序列的关联维数d,然后利用嵌入维数m>=2d+1,选取合适的嵌入维数。
G-P算法自己对那个程序进行仿真,存在问题,没有得到具体结果。
这两种方法的应用场合:
    如果系统方程比较复杂(如超维系统)、或者为一时间序列时,则推荐采样Wolf方法、小数据量方法。
    Wolf方法的特点是时间序列无噪声,空间中小向量的演变高度非线性,而Jacobian方法则是噪声大,空间中小向量的演变接近线性。
    小数据量方法的优点在于:(1)对小数据组的计算可靠;(2)计算量较小,比wolf方法快很多;(3)编程、操作较为容易。
    而关于时间延迟、嵌入维数、平均周期的确定,还是推荐C-C方法和G-P算法,结果更为可靠一些!、
转自:http://blog.sina.com.cn/s/blog_625c01d60100ql2t.html

本帖被以下淘专辑推荐:

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-24 15:24 , Processed in 0.060777 second(s), 20 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表