10. 论文
做毕业论文将占据研究生生活的大部分时间,主要是去做研究,包括选题,这比实际的写 作耗时更多。
硕士论文的目的是为做博士论文练兵。博士水平的研究如果没有准备好的话,是很难进行
的。硕士论文最本质的要求是展示自己的掌握程度:你已经完全理解了本领域最新进展,
并具备相应的操作水平。并不需要你对本领域的最新知识有所拓展,也不要求发表你的论
文。然而我们实验室的论文总是比较大气的,因此很多硕士论文实际上都对本领域的发展
作出了显著的贡献,大约有一半都出版了。这并不一定是好事情。很多人精力都集中于硕
士的工作,所以MIT有这样的名声:硕士论文的质量往往比博士论文高。这有悖于硕士工作
本来是为博士研究作准备的原有目的。另外一个因素是所做研究要对领域有所贡献,至少
需要两年,这使得研究生学习时间之长令人难以忍受。现在或许你感受不到匆忙,但当你
已经在实验室呆了七年后,你肯定迫不及待地想逃出去。硕士从入学到毕业平均时间是两
年半,但是,计算机系强烈鼓励学生提前毕业。如果某个硕士生的题目过于庞大,可将之
分解,一部分来做硕士论文,另一部分给博士生作博士论文。
想要了解硕士论文研究是什么样的,读几本最新的硕士论文。记住比较好的论文是那些出
版的或者成为技术报告的,因为这标志着该论文被认为是扩展了领域的最新知识——换句
话说,他们的论文远远超出了硕士论文的水平。还要读一些通过的但是没有出版的论文,
所有通过的论文都可以在MIT图书馆中找到。博士论文必须对最新知识有所拓展,博士论文
的研究必须具备可出版的质量。MIT的泱泱气质又表现出来了,很多博士论文在几年内都是
某个子领域的权威工作。对于MIT的博士论文来说,开创一个新领域,或者提出并解决一个
新问题,并不是什么了不起的事情。虽然,这并不是必需的。
一般来说,需要两到三年的时间来做博士论文。很多人花一到两年的时间跟硕士生活说再
见,以及选题。这段时间可以去尝试一些别的事情,例如做助教或者在某个非AI领域打下
坚实的基础或者组织个乐队。博士论文的实际写作时间大约是一年。
选题是论文工作中最重要最困难的部分:
? 好的论文题目不仅能够表达个人观点,而且可与同行交流。
? 选择题目必须是自己愿意倾注热情的。个人远景观点是你作为一个科学家的理由,是你
最为关切的意象,原则,思路或者目标。有多种形式。或许你想造一台可与之交谈的计算
机,或许你想把人类从计算机的愚蠢使用中拯救出来,或许你想展示万物都是统一的,或
许你想在太空发现新生命。远景观点总是比较大的,你的论文并不能实现你的远景,但是
可以朝着那个方向努力。
? 做论文时,最困难的就是如何将问题消减至可解决的水平,同时规模又足以做一篇论文
。“解决AI的宽度优先”是常见毛病的一个例子,题目太大太虚了。你会发现需要不断的
缩小题目的范围。选题是一个渐进的过程,不是一个离散的事件,会持续到你宣布论文已
经完成那一刻为止。实际上,解决问题通常比精确地描述问题要容易得多。如果你的目标
是一个五十年的工程,那么合理的十年工程是什么,一年的呢?如果目标的结构庞大,那
么最核心的部件是什么,如何最大程度的了解核心部件?
? 一个重要的因素是你可以忍受多大程度的风险。在最终的成功和风险之间需要权衡。这
也并不总是对的,AI中有很多研究者尚未涉及的想法。
? 好的论文选题有一个中心部分,你确信肯定可以完成,并且你和你的导师都同意这已经
满足毕业要求了。除此之外,论文中还有多种扩展,有失败的可能,但如果成功了,会增
加论文的精彩程度。虽然不是每一个论文选题都符合这个模式,但值得一试。
? 有些人觉得同时在多个项目中工作可以在选题的时候选择可以完成的那个。这确实降低
了风险。另外一些人则愿意在做任何工作之前,选一个单独的题目。
? 可能你只对某个领域感兴趣,这样你的选题范围就狭窄得多。有时候,你会发现系里的
老师没有一个人能够指导你选择的领域。可能还会发现好像那个领域没什么很自然的选题
,反而对别的领域有好想法。
? 硕士选题比博士选题更难,因为硕士论文必须在你所知不多没有足够自信时就完成。
? 博士选题需要考虑的一个因素是是否继续硕士阶段所研究的领域,可能拓展或者作为基
础,或者干脆转到另外一个领域。待在同一个领域事情就简单了,可能只需要一到两年就
毕业了,特别是如果在硕士阶段的工作中已经发现了适合做博士论文的题目。不足之处在
于容易定型,改换领域则能增加知识的宽度。
? 有的论文题目很新奇,有的则很普通。前者开创了新领域,探索了以前未曾研究过的现
象,或者为很难描述的问题提供了有效的解决方法;后者则完美地解决了定义良好的问题
。两种论文都是有价值的。选择哪一种论文,取决于个人风格。
? 论文的“将来的工作”部分,是很好的论文题目来源。
? 无论选什么样的题目,必须是前人未曾做过的。即使是同时有人做的工作,也不好。有
很多东西可作,根本无需竞争。还有一种常见的情况,读了别人的论文后感觉很惊慌,好
像它已经把你的问题解决了。这通常发生在确定论文题目过程中。实际上往往只是表面类
似,因此将论文送给某个了解你的工作的高人看看,看他怎么说。
? MIT AI实验室的论文并非全是有关人工智能的;有些是有关硬件或者程序设计语言的,
也行。
选好题后,即使有点虚,你必须能够回答下列问题:论文的论点是什么?你想说明什么?
你必须有一句,一段,五分钟的答案。如果你不知道自己在干什么,别人也不会严肃对待
你的选题,更糟糕的是,你会陷在选题——再选题的圈子里而不能自拔。
开始作论文研究后,一定要能够用简单的语言解释每一部分的理论和实现是如何为目标服
务的。
记住,一旦选好了题目,你必须与导师就论文完成的标准达成清晰的一致。如果你和他对
论文具有不同的期望,最后你肯定死得很惨。必须定义好“完成测试”的标准,像一系列
的能够证明你的理论和程序的例子。这是必须做的,即是你的导师并不这么要求。如果环
境发生了根本的变化,测试也要随之改变。
首先尝试论文问题的简化版本。用实例检验。在形成理论抽象之前,要完整的探究具有代
表性的例子。
做论文的过程中,有很多浪费时间的方式。要避免下列活动(除非确实跟论文相关):语
言表达的设计;用户接口或者图形接口上过分讲究;发明新的形式化方法;过分优化代码
;创建工具;官僚作风。任何与你的论文不是很相关的工作要尽量减少。
一种众所周知的现象“论文逃避”,就是你突然发现改正某个操作系统的BUG是非常吸引人
也很重要的工作。此时你总是自觉不自觉的偏离了论文的工作。要记住自己应该做些什么
。(本文对于部分作者来说就属于论文逃避现象)。
11. 研究方法论
[本部分内容比较少,请添加]
研究方法学定义了什么是科研活动,如何开展研究,如何衡量研究的进展,以及什么叫做
成功。AI的研究方法学是个大杂烩。不同的方法论定义了不同的研究学派。
方法是工具。使用即可,不要让他们来使用你。不要把自己陷于口号之中:“AI研究需要
牢靠的基础”,“哲学家只会高谈阔论,人工智能则需要拼搏”,“在问为什么之前,先
搞清楚计算的是什么”。实际上,要在人工智能领域取得成功,你必须擅长各种技术方法
,还必须具备怀疑的态度。例如,你必须能够证明定理,同时你还必须思考该定理是否说
明了什么。
很多优秀的AI篇章都是巧妙地在几种方法论中取得平衡。例如,你必须选择一条在太多理
论(可能与任何实际问题都无关)和繁琐的实现(把实际的解决方法表达得语无伦次)之
间的最佳路线。你经常会面临区分“干净”和“肮脏”的研究决策。你应该花时间将问题
在某种程度上形式化吗?还是保持问题的原始状态,此时虽然结构不良但更接近实际?采
用前一种方法(如果可行的话)会得到清晰确定的结果,但这一过程往往是繁琐的,或者
至少不会直接解决问题。后者则有陷入各种处理的漩涡之中的危险。任何工作,任何人,
必须作出明智的平衡。
有些工作象科学。你观察人们是怎样学习算术的,大脑是如何工作的,袋鼠是如何跳的,
然后搞清楚原理,形成可检验的理论。有些工作象工程:努力创建一个更好的问题解决器
或者算法。有些工作象数学:跟形式化打交道,要理解属性,给出证明。有些工作是实例
驱动的,目标是解释特定的现象。最好的工作是以上几种的结合。
方法具有社会性,看看别人是如何攻克类似难题的,向别人请教他们是如何处理某种特殊
情况的。
12. 情感因素
研究是艰苦的工作,很容易对之失去兴趣。一个令人尴尬的事实是在本实验室读博的学生
只有很少比例最后获得学位。有些人离开是因为可以在产业界赚到更多的钱,或者由于个
人的原因;最主要的原因则是由于论文。本节的目标是解释这种情况发生的原因,并给出
一些有益的建议。
所有的研究都包含风险。如果你的项目不可能失败,那是开发,不是研究。面对项目失败
时是多么艰难啊,很容易将你负责的项目失败解释为你自己的失败。虽然,这实际上也证
明了你有勇气向困难挑战。
在人工智能领域很少有人总是一直成功,一年年地出论文。实际上,失败是经常的。你会
发现他们经常是同时做几个项目,只有一些是成功的。最终成功的项目也许反复失败过多
次。经历过很多由于方法错误的失败之后,才取得最终的成功。
在你以后的工作生涯中,会经历很多失败。但是每一个失败的项目都代表了你的工作,很
多思想,思考方式,甚至编写的代码,在若干年后你发现可用于另外一个完全不同的项目
。这种效果只有在你积累了相当程度的失败之后才会显现出来。因此要有最初的失败以后
将会起作用的信念。
研究所花费的实际时间往往比计划的要多得多。一个小技巧是给每个子任务分配三倍于预
期的时间(有些人加了一句:“……,即使考虑了这条原则”)。
成功的关键在于使得研究成为你日常生活的一部分。很多突破和灵感都发生在你散步时。
如果无时无刻地都潜意识的思考研究,就会发现思如泉涌。成功的AI研究者,坚持的作用
一般大于天资。“尝试”也是很重要的,也就是区分浅薄的和重要的思路的能力。
你会发现自己成功的比例是很随机的。有时候,一个星期就做完了以前需要三个月才能完
成的工作。这是令人欣喜的,使得你更愿意在本领域工作下去。其他一些时候,你完全陷
在那里,感觉什么也做不了。这种情况很难处理。你会觉得自己永远不会做出任何有价值
的东西了,或者觉得自己不再具备研究者的素质了。这些感觉几乎肯定是错误的。如果你
是MIT录取的学生,你就是绝对合格的。你需要的是暂停一下,对糟糕的结果保持高度的容
忍。
通过定期设置中短期的目标,例如每周的或者每月的,你有很多工作要做。增加达到这些
目标的可能性有两种方法,你可以把目标记在笔记本中,并告诉另外一个人。你可以与某
个朋友商定交换每周的目标并看谁最终实现了自己的目标。或者告诉你的导师。
有时你会完全陷在那里,类似于写作过程的思路阻塞,这有很多可能的原因,却并无一定
的解决方法。
? 范围过于宽泛了,可尝试去解决流程中的子问题。
? 有时候对你研究能力的怀疑会消磨掉你所有的热情而使得你一事无成。要牢记研究能力
是学习而得的技能,而不是天生的。
? 如果发现自己陷入严重的困境,一个多星期都毫无进展,尝试每天只工作一小时。几天
后,你可能就会发现一切又回到了正轨。
? 害怕失败会使得研究工作更加困难。如果发现自己无法完成工作,问问自己是否是由于
在逃避用实验检验自己的思路。发现自己最近几个月的工作完全是白费的这种可能,会阻
止你进一步开展工作。没有办法避免这种情况,只要认识到失败和浪费也是研究过程的一
部分。
? 看看Alan Lakien的书《How to Get Control of Your Time and Your Life》,其中包
含很多能使你进入充满创造力的状态的无价方法。
很多人发现自己的个人生活和做研究的能力是相互影响的。对于有些人来说,当生活中一
切都不如意时,工作是避难所。其他的人如果生活陷入混乱时就无法工作了。如果你觉得
自己确实悲痛得难以自拔,去看看心理医生。一份非正式的调查表明,我们实验室大约有
一半的学生在读研期间看过一次心理医生。
使得人工智能那么难的一个原因是没有被普遍接受的成功标准。在数学中,如果你证明了
某个定理,你就确实做了某些事情;如果该定理别人都证不出来,那么你的工作是令人兴
奋的。人工智能从相关的学科中借来了一些标准,还有自己的一些标准。不同的实践者,
子领域和学校会强调不同的标准。MIT比其他的学校更强调实现的质量,但是实验室内部也
存在很大的不同。这样的一个后果就是你不可能令所有的人都满意。另外一个后果就是你
无法确定自己是否取得了进展,这会让你觉得很不安全。对你工作的评价从“我所见过最
伟大的”到“空虚,多余,不明所以”不一而足,这都是很正常的,根据别人的反馈修订
自己的工作。
有几种方法有助于克服研究过程中的不安全感。被承认的感觉:包括毕业论文的接受,发
表论文等。更重要的是,与尽可能多的人交流你的思路,并听取反馈。首先,他们能贡献
有用的思路;其次,肯定有一些人会喜欢你的工作,这会使得你感觉不错。由于评价进展
的标准是如此不确定,如果不与其他的研究者充分的交流,很容易盲目。特别当你感觉不
太好时,应该就你的工作进行交流。此时,获得反馈和支持是非常重要的。
很容易看不到自己的贡献,总是想:“如果我能做,肯定是微不足道的。我的所有思想都
太明显了”。实际上,当你回头看时,这些虽然对你是很明显的,对别人并不一定是明显
的。将你的工作解释给很多门外汉听,你会发现现在对你来说是平淡无奇的东西原来那么
难!写下来。
一项对诺贝尔获奖者实施的有关怀疑自己问题(在你研究的过程中,你一直觉得自己是在
做震惊世界的工作吗?)的调查表明:获奖者们一致回答他们经常怀疑自己工作的价值和
正确性,都经历过觉得自己的工作是无关的,太明显了或者是错误的时期。任何科学过程
的常见和重要的部分就是经常严格的评价,很多时候不能确定工作的价值也是科学过程不
可避免的一部分。
有些研究者发现与别人协作比单打独斗工作效果更好。虽然人工智能研究经常是相当个人
主义的,但是也有一部分人一起工作,创建系统,联合发表论文。我们实验室至少已经有
一个联合做毕业论文的先例。缺点是很难与协作者区分对论文的贡献。与实验室之外的人
合作,例如暑期工作时,问题就会少一些。
很多来到MIT AI实验室的学生都是以前所在学校最厉害的人。来到这里之后,会发现很多
更聪明的人。这对于很多一年级左右学生的自尊形成了打击。但周围都是聪明人也有一个
好处:在你把自己不怎么样的(但自己又没有觉察到)想法发表之前就被其他人给打倒在
地了。更现实的讲,现实世界中可没有这么多聪明人。因此到外面找一份顾问的工作有利
于保持心理平衡。首先,有人会为你的才能付费,这说明你确实有些东西。其次,你发现
他们确实太需要你的帮助了,工作良好带来了满足感。
反之,实验室的每一个学生都是从四百多个申请者挑选出来的,因此我们很多学生都很自
大。很容易认为只有我才能解决这个问题。这并没什么错,而且有助于推进领域的发展。
潜在的问题是你会发现所有的问题都比你想象的要复杂得多,研究花的时间比原先计划的
多得多,完全依靠自己还做不了。这些都使得我们中的很多人陷入了严重的自信危机。你
必须面对一个事实:你所做的只能对某个子领域的一小部分有所贡献,你的论文也不可能
解决一个重大的问题。这需要激烈的自我重新评价,充满了痛苦,有时候需要一年左右的
时间才能完成。但这一切都是值得的,不自视过高有助于以一种游戏的精神去作研究。
人们能够忍受研究的痛苦至少有两个情感原因。一个是驱动,对问题的热情。你做该研究
是因为离开它就没法活了,很多伟大的工作都是这样做出来的。虽然这样也有油尽灯枯的
可能。另外一个原因是好的研究是充满乐趣的。在大部分时间里,研究是令人痛苦的,但
是如果问题恰好适合你,你可以玩一样的解决它,享受整个过程。二者并非不可兼容的,
但需要有一个权衡。
要想了解研究是怎么样的,遭到怀疑的时候应该如何安慰自己,读一些当代人的自传会有
些作用。Gregory Bateson's Advice to a Young Scientist, Freeman Dyson's Disturb
ing the Universe, Richard Feynmann's Surely You Are Joking, Mr. Feynmann!, Geo
rge Hardy's A Mathematician's Apology, 和Jim Watson's The Double Helix.
当你完成了一个项目——例如论文——一两个月后,你可能会觉得这一切是那么不值。这
种后冲效果是由于长时间被压抑在该问题上,而且觉得本可以做得更好。总是这样的,别
太认真。等再过了一两年,回头看看,你会觉得:嘿,真棒!多棒的工作!
尾注
本文包含的思想,文本以及评论来自于Phil Agre, Jonathan Amsterdam, Jeff Anton, A
lan Bawden, Danny Bobrow, Kaaren Bock, Jennifer Brooks, Rod Brooks, David Chap
man, Jim Davis, Bruce Donald, Ken Forbus, Eric Grimson, Ken Haase, Dan Huttenl
ocher, Leslie Kaelbling, Mike Lowry, Patrick Sobalvarro, Jeff Shrager, Daniel
Weise, and Ramin Zabih。我们要感谢那些对本文作出贡献的人(对我们的论文作出贡献
的人,顺便一并致谢),特别是我们的导师。
上面所列举的一些思想来自于John Backus的《On Being a Researcher》和Alan Bundy,
Ben du Boulay, Jim Howe和Gordon Plotkin的《How to Get a PhD in AI》。 |