马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
1.1.2 分析问题简介 <BR><BR>分析问题为一3层3跨连续框架,层高3米,柱间距5.5米。所有柱脚固定,右侧右侧向支撑。柱顶受集中荷载,荷载值为外侧柱75.5kN, 内侧柱151kN. 所有横梁受均布荷载25.4kN/m。梁和柱均为标准工型截面,其尺寸如下: <BR> 高 宽 翼缘厚度 腹板厚度 <BR>梁 0.3038 0.165 0.0102 0.0061 <BR>柱 0.2062 0.2039 0.0125 0.0083 <BR>假定底层左端一防火间发生火灾,该防火间内温度随时间按标准火模型上升。分析结构的变形。 <BR>防火间具有防止火灾蔓延和隔绝热量传递的作用。因此,仅防火间内部的结构构件会有明显的温度上升。 ANSYS的梁单元仅能模拟沿截面线性温度分布。为了能准确模拟截面的非均匀温度分布和捕捉局部屈曲等现象,构成防火间的梁和柱将采用壳或体单元,其余部分采用梁单元。两者接合处采用约束方程以保证变形协调。 <BR>在进行传热学分析时,假定梁和柱的构造形式如下图所示:柱的腹部有砖墙,因此,仅朝防火间的翼缘受到热作用。梁上部托混凝土楼板,因此,除上翼缘上表面外的所有表面均受到热作用(如图中虚线所示为受热边界)。热量以对流和辐射的形式从热空气传递到结构表面,又以传导的形式在结构内部传播。 <BR><BR>!首先进行传热学分析 <BR>/PREP7 <BR>/TITLE,Part 1:heat transfer analysis <BR>ET,1,SOLID70 !定义单元类型 <BR>!----------------------------------------------------------------- <BR>!定义参数 <BR>!----------------------------------------------------------------- <BR>W_col=0.2039 !柱截面宽度 <BR>H_col=0.2062 !柱截面高度 <BR>tf_col=0.0125 !柱翼缘厚度 <BR>tw_col=0.0083 !柱腹板厚度 <BR>B_col=(W_col-tw_col)/2 !柱翼缘伸出长度 <BR>D_col=H_col-2*tf_col !柱腹板净高 <BR>W_beam=0.165 !梁截面宽度 <BR>H_beam=0.3038 !梁截面高度 <BR>tf_beam=0.0102 !梁翼缘厚度 <BR>tw_beam=0.0061 !梁腹板厚度 <BR>B_beam=(W_beam-tw_beam)/2 !梁翼缘伸出长度 <BR>D_beam=H_beam-2*tf_beam !梁腹板净高 <BR>Dis_hor=5.5 !框架水平跨间距 <BR>Dis_ver=3.0 !框架竖向层高 <BR>pp=(W_col-W_beam)/2 <BR>!---------------------------------------------------------------------------------- <BR>!定义热分析材料特性 <BR>!---------------------------------------------------------------------------------- <BR>!热分析需要定义的材料特性包括导热性,比热,密度等 <BR>MPTEMP,,20,800,900,1000 !定义随温度变化的钢材的导热性 <BR>MPDATA,KXX,1,,53.334,27.36,27.36,27.36 <BR>MPTEMP !清除温度场 <BR>MPTEMP,,20,100,180,260,380 !定义随温度变化的钢材的比热 <BR>MPDATA,C,1,,439.8,487.62,522.33,550.75,596.52 <BR>MPTEMP,,500,600,640,720,735 <BR>MPDATA,C,1,,666.5,759.92,798.67,1388,5000 <BR>MPTEMP,,750,830,900,1000 <BR>MPDATA,C,1,,1483,725,650,650 <BR>MP,DENS,1,7850 !定义钢材的密度 <BR>!--------------------------------------------------------------------------------- <BR>!建立分析模型 <BR>!--------------------------------------------------------------------------------- <BR>!采用直接生成节点和单元的办法建立实体模型。框架除防火间以外的部分不参与传热 <BR>!反应。因此,仅建立防火间的分析模型 <BR>!生成第一根柱 <BR>N,1,-H_col/2,,-W_col/2 !产生构成柱截面的节点 <BR>N,2,-H_col/2,,-W_col/2+pp <BR>NGEN,4,1,2,,,,,(B_col-pp)/3 <BR>N,6,-H_col/2,,tw_col/2 <BR>NGEN,4,1,6,,,,,(B_col-pp)/3 <BR>N,10,-H_col/2,,W_col/2 <BR>NGEN,2,10,1,10,1,tf_col <BR>NGEN,10,6,15,16,1,D_col/10 <BR>NGEN,2,60,11,20,1,D_col <BR>NGEN,2,10,71,80,1,tf_col <BR>NGEN,2,100,all,,,,(Dis_ver-H_beam/2)/60 !将已生成的节点沿y方向偏移 <BR>!(Dis_ver-H_beam/2)/60拷贝一层 <BR>!节点号加100 <BR>E,1,2,12,11,101,102,112,111 !生成第一层单元 <BR>EGEN,9,1,1 <BR>E,15,16,22,21,115,116,122,121 <BR>EGEN,10,6,10 <BR>E,71,72,82,81,171,172,182,181 <BR>EGEN,9,1,20 <BR>EGEN,60,100,1,28,1,,,,,,0,(Dis_ver-H_beam/2)/60 !将第一层单元沿y方向拷贝60层 <BR>!生成第一根柱 <BR>!将柱的模型继续向上延伸梁的截面高度,生成梁柱节点。 <BR>!节点处单元尺寸尽量与梁的截面单元尺寸一致。 <BR>NSEL,S,NODE,,6001,6090,1 !沿梁的翼缘厚度生成一层单元 <BR>NGEN,2,100,ALL,,,,tf_beam <BR>EGEN,2,100,1653,1680,1 <BR>NSEL,ALL <BR>NSEL,S,NODE,,6101,6190 !沿梁的腹板高度生成10层单元 <BR>NGEN,11,100,ALL,,,,D_beam/10 <BR>EGEN,11,100,1681,1708,1 <BR>NSEL,ALL <BR>NSEL,S,NODE,,7101,7190 !继续沿梁的翼缘厚度生成一层单元 <BR>NGEN,2,100,ALL,,,,tf_beam <BR>EGEN,2,100,1961,1988,1 <BR>NSEL,ALL <BR>!将实体模型的柱向上延伸H_beam的高度,避免梁单元和实体单元在 <BR>!梁柱节点处切换 <BR>NSEL,S,NODE,,7201,7290 !生成6层单元,每层高H_beam/6 <BR>NGEN,7,100,ALL,,,,H_beam/6 <BR>EGEN,7,100,1989,2016,1 <BR>NSEL,ALL <BR>!第一根实体模型柱完成。 <BR>!共计:节点79层,每层编号1-90, 逐层加100,顶层编号7801-7890 <BR>!单元78层,自动编号。每层28个,共28*78=2184个 <BR><BR>!生成第二根柱及梁柱节点 <BR>NGEN,2,10000,ALL,,,Dis_hor !从第一根柱拷贝所有的节点 <BR> !节点号加10000 <BR>EGEN,2,10000,1,2184,1 !从第一根柱拷贝所有的单元 <BR><BR>!生成梁 <BR>!梁被夹在两根柱之间,实际长度为Dis_hor-H_col <BR>N,20001,H_col/2,Dis_ver-H_beam/2,-W_beam/2 <BR>!生成梁的截面的所有节点 <BR>!梁的节点编号从20001开始 <BR>NGEN,4,1,20001,,,,,B_beam/3 <BR>N,20005,H_col/2,Dis_ver-H_beam/2,tw_beam/2 <BR>NGEN,4,1,20005,,,,,B_beam/3 <BR>NGEN,2,10,20001,20008,1,,tf_beam <BR>NGEN,10,6,20014,20015,1,,D_beam/10 <BR>NGEN,2,60,20011,20018,1,,D_beam <BR>NGEN,2,10,20071,20078,1,,tf_beam <BR>NGEN,2,100,20001,20090,,(Dis_hor-H_col)/100 !沿x方向偏移(Dis_hor-H_col)/100 <BR>!拷贝一层节点 <BR>E,20001,20002,20012,20011,20101,20102,20112,20111 !生成梁的第一层截面单元 <BR>!两根柱单元总数为4368 <BR>!故梁的单元编号从4369开始 <BR>EGEN,7,1,4369 <BR>E,20014,20015,20021,20020,20114,20115,20121,20120 <BR>EGEN,10,6,4376 <BR>E,20071,20072,20082,20081,20171,20172,20182,20181 <BR>EGEN,7,1,4386 <BR>EGEN,100,100,4369,4392,1,,,,,,(Dis_hor-H_col)/100 !沿x方向拷贝100层生成整根梁 <BR>!梁的实体模型完成 <BR>!总计:梁的节点为101层,每层编号1-88。从20001开始,逐层加100 <BR>!左端截面的节点为20001-20088; 右端截面的节点为30001-30088 <BR>!每层单元数为24个,总计24*100=2400个。单元编号为4369-6768 <BR><BR>!------------------------------------------------------------------------------- <BR>!建立梁和柱连接处的耦合关系 <BR>!------------------------------------------------------------------------------- <BR>!自动耦合所有节点坐标重合的节点。梁翼缘的节点和柱的侧面完全重合,可以自动耦合。 <BR>!梁腹板的节点距离柱侧面相应节点的距离为(tw_col-tw_beam)/2=0.0011 <BR>!因此,设置耦合误差为0.002时,也能自动耦合。 <BR>CPINTF,all,0.002 <BR>FINISH <BR>!-------------------------------------------------------------------------------- <BR>!定义边界条件,并求解 <BR>!-------------------------------------------------------------------------------- <BR>/SOLU <BR>ANTYPE,TRANS !定义分析类型 <BR>TUNIF,20 !定义初始温度 <BR>AUTOTS,ON !打开自动步长控制 <BR>DELTIM,20 !定义初始时间步长 <BR>STEF,5.6696E-8 !定义 <BR>TOFFST,273 !定义绝对温度偏差 <BR>!定义受到火的热作用的边界 <BR>NSEL,S,NODE,,71,6071,100 !选择第一根柱右侧翼缘的节点, <BR> !定义为HTbound1 <BR>*DO,i,80,90,1 <BR>NSEL,A,NODE,,i,6000+i,100 <BR>*ENDDO <BR>CM,HTbound1,NODE <BR>NSEL,S,NODE,,10020,16020,100 !选择第二根柱左侧翼缘的节点, <BR> !定义为HTbound2 <BR>*DO,i,10001,10011,1 <BR>NSEL,A,NODE,,i,6000+i,100 <BR>*ENDDO <BR>CM,HTbound2,NODE <BR>NSEL,S,NODE,,20001,30090,100 !选择梁除上翼缘上表面外所有的面 <BR> !定义为HTbound3 <BR>*DO,i,20081,20090,1 <BR>NSEL,U,NODE,,i,10000+i,100 <BR>*ENDDO <BR>CM,HTbound3,NODE <BR>!施加热边界条件并求解 <BR>*DO,tm,60,180,60 !定义时间参数tm从60到600(秒) <BR>Time,tm !当前时间为tm <BR>Temp=20+345*LOG10(8*tm/60+1) !计算环境空气温度 <BR>SF,HTbound1,CONV,25,Temp !对边界HTbound1施加对流作用 <BR>SF,HTbound2,CONV,25,Temp !对边界HTbound2施加对流作用 <BR>SF,HTbound3,CONV,25,Temp !对边界HTbound3施加对流作用 <BR>SF,HTbound1,RDSF,0.9,1 !定义HTbound1为第一个热辐射场 <BR>SF,HTbound2,RDSF,0.9,2 !定义HTbound2为第二个热辐射场 <BR>SF,HTbound3,RDSF,0.9,3 !定义HTbound3为第三个热辐射场 <BR>SPCTEMP,1,Temp !定义第一个热辐射场的环境温度 <BR>SPCTEMP,1,Temp !定义第二个热辐射场的环境温度 <BR>SPCTEMP,1,Temp !定义第三个热辐射场的环境温度 <BR>SOLVE !求解 <BR>*ENDDO <BR>FINISH <BR>/POST1 <BR>PLNSOL,TEMP,,0, <BR>FINISH <BR><BR>!-------------------------------------------------------------------------------------- <BR>!结构分析 <BR>!-------------------------------------------------------------------------------------- <BR>/PREP7 <BR>/TITLE,Part 2: structural analysis <BR>ET,1,SOLID45,1,1 !对应于SOLID70的结构单元 <BR>!为SOLID45 <BR>ET,2,BEAM188 !单元类型2 <BR>!------------------------------------------------------------------------------ <BR>!定义结构分析材料特性 <BR>!------------------------------------------------------------------------------ <BR>fy=275E+6 !常温下屈服应力 <BR>exx=2.1E+11 !常温下杨氏模量 <BR>MPTEMP !清楚原来的温度场 <BR>MPTEMP,,20,100,200,300,400 !定义随温度变化的杨氏模量 <BR>MPDATA,EX,1,,exx,0.9*exx,0.8*exx,0.7*exx <BR>MPTEMP,,500,600,700,800,900 <BR>MPDATA,EX,1,,0.6*exx,0.31*exx,0.13*exx,0.09*exx,0.0675*exx <BR>MP,NUXY,1,0.3 !定义泊松比 <BR>MP,ALPX,1,1.4E-5 !定义热膨胀系数 <BR>! <BR>TB,MISO,1,10,3 !定义随温度变化的应力-应变关系 <BR>TBTEMP,20 !20度时的应力-应变关系 <BR>TBPT,,fy/exx,fy <BR>TBPT,,0.02,fy <BR>TBPT,,0.15,fy <BR>! <BR>TBTEMP,100 !100度时的应力-应变关系 <BR>TBPT,,fy/exx,fy <BR>TBPT,,0.02,fy <BR>TBPT,,0.15,fy <BR>! <BR>TBTEMP,200 !200度时的应力-应变关系 <BR>TBPT,,0.807*fy/(0.9*exx),0.807*fy <BR>TBPT,,0.02,fy <BR>TBPT,,0.15,fy <BR>! <BR>TBTEMP,300 !300度时的应力-应变关系 <BR>TBPT,,0.613*fy/(0.8*exx),0.613*fy <BR>TBPT,,0.02,fy <BR>TBPT,,0.15,fy <BR>! <BR>TBTEMP,400 !400度时的应力-应变关系 <BR>TBPT,,0.420*fy/(0.7*exx),0.420*fy <BR>TBPT,,0.02,fy <BR>TBPT,,0.15,fy <BR>! <BR>TBTEMP,500 !500度时的应力-应变关系 <BR>TBPT,,0.360*fy/(0.6*exx),0.360*fy <BR>TBPT,,0.02,0.780*fy <BR>TBPT,,0.15,0.780*fy <BR>! <BR>TBTEMP,600 !600度时的应力-应变关系 <BR>TBPT,,0.180*fy/(0.310*exx),0.180*fy <BR>TBPT,,0.02,0.470*fy <BR>TBPT,,0.15,0.470*fy <BR>! <BR>TBTEMP,700 !700度时的应力-应变关系 <BR>TBPT,,0.075*fy/(0.130*exx),0.075*fy <BR>TBPT,,0.02,0.230*fy <BR>TBPT,,0.15,0.230*fy <BR>! <BR>TBTEMP,800 !800度时的应力-应变关系 <BR>TBPT,,0.050*fy/(0.090*exx),0.050*fy <BR>TBPT,,0.02,0.110*fy <BR>TBPT,,0.15,0.110*fy <BR>! <BR>TBTEMP,900 !900度时的应力-应变关系 <BR>TBPT,,0.0375*fy/(0.0675*exx),0.0375*fy <BR>TBPT,,0.02,0.060*fy <BR>TBPT,,0.15,0.060*fy <BR>!------------------------------------------------------------------------------ <BR>!定义梁和柱的截面特性 <BR>!------------------------------------------------------------------------------ <BR>SECTYPE,1,beam,I,column !定义柱截面为截面类型1 <BR>SECDATA,W_col,W_col,H_col,tf_col,tf_col,tw_col <BR>SECTYPE,2,beam,I,beam !定义梁截面为截面类型2 <BR>SECDATA,W_beam,W_beam,H_beam,tf_beam,tf_beam,tw_beam <BR>!---------------------------------------------------------------------------- <BR>!用梁单元建立框架的剩余部分的模型 <BR>!--------------------------------------------------------------------------- <BR>K,1,,Dis_ver+H_beam*1.5 !定义生成框架的关键点 <BR>K,2,,2*Dis_ver <BR>K,3,,3*Dis_ver <BR>K,4,Dis_hor,Dis_ver+H_beam*1.5 <BR>K,5,Dis_hor,2*Dis_ver <BR>K,6,Dis_hor,3*Dis_ver <BR>K,7,Dis_hor+H_col/2,Dis_ver <BR>K,8,2*Dis_hor <BR>K,9,2*Dis_hor,Dis_ver <BR>K,10,2*Dis_hor,2*Dis_ver <BR>K,11,2*Dis_hor,3*Dis_ver <BR>K,12,3*Dis_hor <BR>K,13,3*Dis_hor,Dis_ver <BR>K,14,3*Dis_hor,2*Dis_ver <BR>K,15,3*Dis_hor,3*Dis_ver <BR>! <BR>K,100,-3,3 !定义用于确定梁的主轴方向的 <BR>!关键点 <BR>K,200,5,20 <BR>!生成线 <BR>L,1,2 !线1-10为柱 <BR>L,2,3 <BR>L,4,5 <BR>L,5,6 <BR>L,8,9 <BR>L,9,10 <BR>L,10,11 <BR>L,12,13 <BR>L,13,14 <BR>L,14,15 <BR>L,2,5 !线11-18为梁 <BR>L,3,6 <BR>L,7,9 <BR>L,5,10 <BR>L,6,11 <BR>L,9,13 <BR>L,10,14 <BR>L,14,15 <BR>!定义线的属性 <BR>LSEL,S,LINE,,1,10,1 !定义线1-10 (柱)的属性 <BR>LATT,1,,2,,100,,1 <BR>LSEL,ALL <BR>LSEL,S,LINE,,11,18,1 !定义线11-18(梁)的属性 <BR>LATT,1,,2,,200,,2 <BR>LSEL,ALL <BR>!划分单元 <BR>LESIZE,ALL,0.3 !定义单元尺寸 <BR>LEMESH,ALL !划分单元 <BR><BR>!--------------------------------------------------------------------------- <BR>!建立耦合与约束关系 <BR>!--------------------------------------------------------------------------- <BR>CPINTF,ALL,0.002 !自动耦合实体模型部分 <BR>!实体模型和线模型之间有三个接口:两个柱端的连接,以及底层中跨的梁左端连接到 <BR>!第二根实体柱的侧面 <BR>!建立关键点1和第一根柱柱端的连接 <BR>!实体模型和线模型之间有三个接口:两个柱端的连接,以及底层中跨的梁左端连接到第二根实体柱的侧面 <BR>!建立关键点1和第一根柱柱端的连接 <BR>N1=NODE(0,Dis_ver+H_beam*1.5,0) !找到对应于关键点1的节点号 <BR>num=0 !num用于标记约束方程的编号 <BR>*DO,k,7801,7820,1 !建立柱端一翼缘节点和节点N1之间绕Z轴转动的约束关系 <BR>num=num+1 <BR>DX=NX(k) <BR>CE,num,0,k,UY,1,N1,UY,-1,N1,ROTZ,-DX <BR>*ENDDO <BR>*DO,k,7871,7890,1 !建立柱端另一翼缘节点和节点N1之间绕Z轴转动的约束关系 <BR>num=num+1 <BR>DX=NX(k) <BR>CE,num,0,k,UY,1,N1,UY,-1,N1,ROTZ,-DX <BR>*ENDDO <BR>*DO,k,7821,7869,1 !建立柱端腹板节点和节点N1之间绕Z轴转动的约束关系 <BR>num=num+1 <BR>DX=NX(k) <BR>CE,num,0,k,UY,1,N1,UY,-1,N1,ROTZ,-DX <BR>num=num+1 <BR>DX=NX(k+1) <BR>CE,num,0,k+1,UY,1,N1,UY,-1,N1,ROTZ,-DX <BR>*ENDDO <BR>NSEL,S,NODE,,N1 !耦合节点N1和柱端腹板节点 <BR>!在X方向的位移 <BR>NSEL,A,NODE,,7821,7869,6 <BR>NSEL,A,NODE,,7822,7870,6 <BR>CP,NEXT,UX,ALL <BR>NSEL,ALL <BR>!类似地,建立关键点4和第二根柱端的连接 <BR>N4=NODE(Dis_hor,Dis_ver+H_beam*1.5,0) <BR>*DO,k,17801,17820,1 <BR>num=num+1 <BR>DX=NX(k) <BR>CE,num,0,k,UY,1,N4,UY,-1,N4,ROTZ,-DX <BR>*ENDDO <BR>*DO,k,17871,17890,1 <BR>num=num+1 <BR>DX=NX(k) <BR>CE,num,0,k,UY,1,N4,UY,-1,N4,ROTZ,-DX <BR>*ENDDO <BR>*DO,k,17821,17869,1 <BR>num=num+1 <BR>DX=NX(k) <BR>CE,num,0,k,UY,1,N4,UY,-1,N4,ROTZ,-DX <BR>num=num+1 <BR>DX=NX(k+1) <BR>CE,num,0,k+1,UY,1,N4,UY,-1,N4,ROTZ,-DX <BR>*ENDDO <BR>NSEL,S,NODE,,N4 <BR>NSEL,A,NODE,,17821,17869,6 <BR>NSEL,A,NODE,,17822,17870,6 <BR>CP,NEXT,UX,ALL <BR>NSEL,ALL <BR>!建立梁端关键点7和柱侧面的连接 <BR>N7=NODE(Dis_hor+H_col/2,Dis_ver,0) !对应于关键点7的节点为N7 <BR>*DO,i,16000,16100,100 !建立梁的上翼缘的转动约束 <BR>*DO,j,81,90,1 <BR>num=num+1 <BR>DY=NY(i+j)-Dis_ver <BR>CE,num,0,i+j,UX,1,N7,UX,-1, N7,ROTZ,DY <BR>*ENDDO <BR>*ENDDO <BR>*DO,i,17100,17200,100 !建立梁的下翼缘的转动约束 <BR>*DO,j,81,90,1 <BR>num=num+1 <BR>DY=NY(i+j)-Dis_ver <BR>CE,num,0,i+j,UX,1,N7,UX,-1, N7,ROTZ,DY <BR>*ENDDO <BR>*ENDDO <BR>NSEL,S,NODE,,N7 !耦合梁的腹板与柱的侧面沿 <BR>!Y方向的位移 <BR>NSEL,A,NODE,,16285,17085,100 <BR>NSEL,A,NODE,,16286,17086,100 <BR>CP,NEXT,UY,ALL <BR>NSEL,ALL <BR>FINISH <BR> <BR>/SOLU <BR>ANTYPE,0 !静力分析 <BR>TREF,20 !参考温度为20 <BR>NLGEOM,ON !设置大变形效应 <BR>!----------------------------------------------------------------------------- <BR>!施加静力分析荷载与边界条件 <BR>!----------------------------------------------------------------------------- <BR>NSEL,S,LOC,Y,0 !所有柱脚固定 <BR>D,ALL,ALL <BR>NSEL,ALL <BR>DK,13,UX !框架右端设水平支撑 <BR>DK,14,UX <BR>DK,15,UX <BR>DK,ALL,UZ !所有梁柱节点处设平面外支撑 <BR>DK,ALL,ROTX !所有梁柱节点处设扭转约束 <BR>DK,ALL,ROTY <BR>FK,3,FY,-75500 !柱顶集中力 <BR>FK,6,FY,-151000 <BR>FK,11,FY,-151000 <BR>FK,15,FY,-75500 <BR>LSEL,S,LINE,,11,18,1 !对所有线单元施加横梁均布荷载 <BR>ESLL,S <BR>SFBEAM,ALL,,PRES,25400 <BR>ESEL,ALL <BR>LSEL,ALL <BR>NSEL,S,NODE,,20084,30084,100 !对实体梁在腹板上部施加面均布 <BR>!荷载 <BR>NSEL,A,NODE,,20085,30085,100 <BR>SF,ALL,PRES,25400/tw_beam <BR>NSEL,ALL <BR>!---------------------------------------------------------------------------- <BR>!设置时间步长并求解 <BR>!---------------------------------------------------------------------------- <BR>TIME,1 !第一步常温下的反应分析,时间为1 <BR>DELTIM,0.2 !初始步长0.2 <BR>SOLVE !求解 <BR>*DO,tm,60,180,60 !设置时间从60到180,步长60 <BR>TIME,tm !当前时间为tm <BR>LDREAD,TEMP,,,tm,,,RTH !读入时间tm时的温度分布 <BR>DELTIM,20 !初始步长20 <BR>SOLVE !求解 <BR>*ENDDO <BR>FINISH <BR>/POST1 !后处理 <BR>PLNSOL,U,Y !画出框架的变形和沿Y方向的变形 <BR>FINISH <BR>/POST26 !时间后处理 <BR>NSOL,2,25005,U,Y !定义变量UY-梁的跨中挠度 <BR>NSOL,3,20004,U,X !定义变量UX-梁的左端伸出长度 <BR>PLVAR,2,3 !画出以上变量随时间的变化关系 <BR>FINISH <BR> |