马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
http://www.wanfangdata.com.cn/qi ... 004/0404/040402.htm
力学进展
ADVANCES IN MECHANICS
2004 Vol.34 No.4 P.437-445
--------------------------------------------------------------------------------
自然单元法研究进展
ADVANCES IN NATURAL ELEMENT METHOD
王兆清 冯伟
摘 要:自然单元法是一种基于Voronoi图和Delaunay三角化几何结构,以自然邻点插值为试函数的一种新型数值方法.其既具有无网格方法和经典有限元方法的优点,又克服了两者的一些缺陷,是一种发展前景广阔的求解微分方程的数值方法.自然单元法的形函数满足插值性质,可以像有限元法一样直接施加本质边界条件,不存在基于移动最小二乘拟合的无网格方法不能直接施加本质边界条件的难题.由于自然单元法是无网格方法,可以方便处理有限元方法较难处理的一些问题,例如移动边界和大变形等问题.自然单元法与其他数值方法的最根本区别于其插值格式的不同.将自然邻点插值用于Galerkin过程,就得到基于Voronoi结构的自然单元Galerkin法.自然邻点插值有自然邻点Sibson插值和Laplace插值(非Sibson插值)两种.Laplace插值比Sibson插值在计算上要简单的多,并且不论对凸的或非凸的区域都能精确施加本质边界条件.以Laplace插值为试函数的自然单元法在数值实施上比以Sibson插值为试函数的自然单元法简单.本文对基于Voronoi结构的自然邻点插值和自然单元法的基本思想作了介绍,综述了国内外关于自然单元法的研究成果,总结了自然单元法的优点和尚需解决的问题.
关键词:Voronoi图,Delaunay三角化,自然邻点插值,自然单元法
作者单位:王兆清(上海大学上海市应用数学与力学研究所,上海,200072)
冯伟(上海大学上海市应用数学与力学研究所,上海,200072)
参考文献:
[1]李开泰,黄艾香,黄庆怀.有限元方法及其应用.西安:西安交通大学出版社,1984
[2]陈传淼,黄云清.有限元高精度理论.长沙:湖南科学技术出版社,1995
[3]Pagano N J. Interlaminar Response of Composite Material. North-Holland, Amsterdam: Elaseiver Science Publisher,1989
[4]嵇醒,臧跃龙,程玉民.边界元法进展及通用程序.上海:同济大学出版社,1997
[5]钱伟长,黄黔,冯伟.对称复合材料层合板弯曲的三维数值分析.应用数学和力学,1994,15(1):1~6
[6]钱伟长,黄黔,冯伟.复合材料对称层合板单向拉伸与面内剪切下的三维应力分析.应用数学和力学,1994,15(2):95~103
[7]Armando Duarte C. A review of some meshless methods to solve partial differential equations. TICAM Report 95-06
[8]Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: An overview and recent developments.Int. J. Numer. Methods Eng. 1994, 37:3~47
[9]宋康祖,陆明万,张雄.固体力学中的无网格方法.力学进展,2000,30(3):55~65
[10]周维垣,寇晓东.无单元法及其工程应用.力学学报,1998,30(2):193~201
[11]曹国金,姜弘道.无单元法研究和应用现状及动态.力学进展,2002,32(4):526~534
[12]龙述尧,陈莘莘.弹塑性力学问题的无单元迦辽金法.工程力学,2003,20(2):66~70
[13]程玉民,陈美娟.弹性力学的一种边界无单元法.力学学报,2003,35(2):181~186
[14]石根华.数值流形方法与非连续变形分析.裴觉民译.北京:清华大学出版社,1997
[15]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37:229~256
[16]Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Engrg, 1996, 131:133~145
[17]Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature, 1995, 376:655~660
[18]Franz Aurenhammer, Rolf Klein. Voronoi diagram. In: Jorg-Rüdiger Sack, Jorge Urrutia eds. Handbook of Computational Geometry, B.V. North-Holland, Amsterdam: Elsevier Science Publishers, 2000. 201~290.
[19]Green P J, Sibson R R. Computing dirichlet tessellations in the plane. The Computer Journal, 1978, 21:168~173
[20]Peter Su, Robert L Scot Drysdale. A comparison of sequential Delaunay triangulation algorithms. Computational Geometry, 1997, 7:361~385
[21]Karoly bezdek. A lower bound for the mean width of Voronoi polyhedra of unit ball packings in E3. Arch Math, 2000, 74:392~400
[22]Kenji Shimada, Gossard David C. Automatic triangular mesh generation of trimmed parametric surface for finite element analysis. Computer Aided Geometric Design , 1998,15:199~222
[23]Marc Vigo, Nuria Pla. Computing directional constrained Delaunay triangulations. Computers & Graphics, 2000, 24:181~190
[24]Itai Benjamini, Oded Schramm. Conformal invariance ofVoronoi percolation. Commun Math Phys, 1998, 197:75~107
[25]Seed G M. Delaunay and Voronoi tessellations and minimal simple cycle in triangular region and regular-3 undirectedplanar graphs. Advances Engineering Software, 2001, 32:339~351
[26]Monique Laurent. Delaunay transformations of a Delaunay polytope. Journal of Algebraic Combinatorics, 1996, 5:37~46
[27]Golias N A, Dutton R W. Delaunay triangulation and 3D adaptive mesh generation. Finite Elements in Analysis and Design, 1997, 25:331~341
[28]Mir Abolfazl Mostafavi, Christopher Gold, Maciej Dakowicz. Delete and insert operations in Voronoi/Delaunay methods and applications. Computers & Geosciences, 2003, 29:523~530
[29]Marc Vigo, Núria Pla, Josep Cotrina. Regular triangulations of dynamic sets of points. Computer Aided Geometric Design, 2002 19:127~149
[30]Indermitte C, Liebling Th M, Troyanov M, Clemencon H.Voronoi diagrams on piecewise flat surfaces and an application to biological growth. Theoretical Computer Science,2001, 263:263~274
[31]Sukumar N. The natural element method in Solid mechanics: [dissertation]. Evanston, Illinois: Northwestern University, June 1998
[32]Sibson R. A vector identity for the Dirichlet tessellation.Math Proc Cambridge Philos Soc, 1980, 87:151~155
[33]Hisamoto Hiyoshi. Study on interpolation based on Voronoi diagrams: [dissertation]. Toky University of Tokyo, 2000
[34]Belikov V V, Ivanov V D, Kontorovich V K, et al. The non Sibson interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Computational Mathematics and Mathematical Physics, 1997, 37(1):9~15
[35]Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitray system of points in Euclidean space and adaptive isolines generation. Applied Numerical Mathematics, 2000,32:371~387
[36]Semenov A Y, Belikov V V. New non-Sibsonian interpola tion on arbitrary system of points in Euclidean space. In: Sydow A, ed. 15th IMACS World Congress. Vol. 2, Numerical Mathematics, Wissen. Techn. Verlag, Berlin, 1997. 237~242
[37]Hisamoto Hiyoshi , Kokichi Sugihara. Improving continuity of Voronoi-based interpolation over Delaunay spheres.Computational Geometry, 2002, 22:167~183
[38]Hisamoto Hiyoshi, Kokichi Sugihara. Two generalizations of an interpolant based Voronoi diagrams. International Journal of Shape Modeling, 1999, 5(2): 219~231
[39]Hisamoto Hiyoshi, Kokichi Sugihara. An interplant based on line segment Voronoi diagrams. METR 99-02, 1999
[40]Kokichi Sugihara. Surface interpolation based on new local coordinates. Computer-Aided Design, 1999, 31:51~58
[41]Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering, 1998, 43:839~887
[42]Sukumar N. Sibson and non-Sibsonian interpolations for elliptic partial differential equations. In: Bathe K J, ed. First MIT Conference on Computational Fluid and Solid Mechanics, 2001. 1665~1667
[43]Sukumar N, Moran B. C′ natural neighbor interpolant for partial differential equations. Numerical Methods for Partial Differential Equations. 1999, 15(4): 417~447
[44]Sukumar N, Moran, B Semenov A Yu, Belikov V V. Nat ural neighbor Galerkin methods. International Journal for Numerical Methods in Engineering, 2001, 50:1~27
[45]Sukumar N. A note on natural neighbor interpola tion and the natural element method(NEM). URL: http://dilbert.engr. ucdavis. edu/~suku, 1997.11
[46]Sukumar N. Meshless methods and partition of unity finite elements. URL: http://dilbert.engr.ucdavis.edu/~suku
[47]Sukumar N. Voronoi cell finite difference method for the diffusion operator on arbitrary unstructured grids. International Journal for Numerical Methods in Engineering, 2003,57:1~34
[48]Bueche D, Sukumar N, Moran B. Dispersive properties of the natural element method. Computational Mechanics,2000, 25:207~219
[49]Farin G. Surface over Dirichlet tessellation. Computer Aided Geometry Design, 1990, 7:281~292
[50]Gross L, Farin G. A transfinite form of Sibson's interpolant. Discrete Apllied Mathematics, 1999, 93:33~50
[51]Boissonnat J D, Cazals F. Smooth surface reconstruction via natural neighbour interpolation of distance function. Computational Geometry, 2002, 22:185~203
[52]Boissonnat J D, Cazals F. Natural neighbor coordinates of points on Surface. Computational Geometry. 2001, 19:155~173
[53]Francois Anton, Darka Mioc, Alain Fournier. Reconstructing 2D images with natural neighbour interpolation. The Visual Computer, 2001, 17:134~146
[54]Watson D F, Philip G M. Neighborhood-based interpolation. Geobyte, 1987, 2(2): 12~16
[55]Watson D F. Natural neighbor sorting on the N-dimensional sphere. Pattern Recognition, 1988, 21(1), 63~67
[56]Owens S J. An implementation of natural neighbor interpolation in three dimensions: [Master's Thesis]. Brigham:Young University, 1992
[57]Isaac Amidror. Scattered data interpolation methods for electronic imaging systems: a survey. Journal of Electronic Imaging , 2002, 11(2): 157~176
[58]Erik Meijering. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of The IEEE, 2002, 90(3): 319~342
[59]Brown J L. System of coordinates associated with points scattered in the plane. Computer Aided Geometric Design,1997, 14:547~559
[60]Sambridge M, Braun J, McQueen H. Geophysical parame terization and interpolation of irregular data using natural neighbours. Geophys J Int, 1995, 122:837~857
[61]Sambridge M, Braun J, McQueen H. Computational meth ods for natural neighbour interpolation in two and three dimensions. In: May, Easton, eds. The Seventh Biennial Computational Techniques and Applications Conference,1995-07-03-07, Melbourne, Australia, Singapore: World Scientific, 1986. 685~692
[62]蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报,2003,35(2):187~193
[63]朱怀球,吴江航.一种基于Voronoi Cells的C∞插值基函数及其在计算流体力学中的若干应用.北京大学学报(自然科学版),2001, 37(5): 669~678
[64]Cueto E, Calvo B, Doblare M. Modelling three-dimensional piece-wise homogeneous domains using the α-shape-based natural element method. Int J Numer Meth Engng, 2002,54:871~897
[65]Cueto E, Cegonino J, Calvo B, Doblare M. On the imposi tion of essential boundary conditions in natural neighbour Galerkin methods. Commun Numer Meth Engng, 2003, 19: 361~376
[66]Cueto E, Doblare M, Gracia L. Imposing essential bound ary conditions in the natural element method by means of density-scaled a-shapes. Int J Numer Meth Engng, 2000,49:519~546
[67]Cueto E, Sukumar N, Calvol B, et al. Overview and recent advances in natural neighbour Galerkin methods. Archives of Computational Methods in Engineering, 2003, 10(4):307~384
收稿日期:2003年9月22日
修稿日期:2004年6月2日
出版日期:2004年11月25日
[ 本帖最后由 yejet 于 2006-11-3 21:23 编辑 ] |