6)<B >Linux</B>程序设计入门--消息管理 <BR>前言:<B >Linux</B>下的进程通信(IPC) <BR><B >Linux</B>下的进程通信(IPC) <BR>POSIX无名信号量 <BR>System V信号量 <BR>System V消息队列 <BR>System V共享内存 <BR>1。POSIX无名信号量 如果你学习过操作系统,那么肯定熟悉PV操作了.PV操作是原子 <BR>操作.也就是操作是不可以中断的,在一定的时间内,只能够有一个进程的代码在CPU上面 <BR>执行.在系统当中,有时候为了顺利的使用和保护共享资源,大家提出了信号的概念. 假设 <BR>我们要使用一台打印机,如果在同一时刻有两个进程在向打印机输出,那么最终的结果会 <BR>是什么呢.为了处理这种情况,POSIX标准提出了有名信号量和无名信号量的概念,由于Li <BR>nux只实现了无名信号量,我们在这里就只是介绍无名信号量了. 信号量的使用主要是用 <BR>来保护共享资源,使的资源在一个时刻只有一个进程所拥有.为此我们可以使用一个信号 <BR>灯.当信号灯的值为某个值的时候,就表明此时资源不可以使用.否则就表>示可以使用. <BR>为了提供效率,系统提供了下面几个函数 <BR>POSIX的无名信号量的函数有以下几个: <BR>#include <semaphore.h> <BR>int sem_init(sem_t *sem,int pshared,unsigned int value); <BR>int sem_destroy(sem_t *sem); <BR>int sem_wait(sem_t *sem); <BR>int sem_trywait(sem_t *sem); <BR>int sem_post(sem_t *sem); <BR>int sem_getvalue(sem_t *sem); <BR>sem_init创建一个信号灯,并初始化其值为value.pshared决定了信号量能否在几个进程 <BR>间共享.由于目前<B >Linux</B>还没有实现进程间共享信号灯,所以这个值只能够取0. sem_dest <BR>roy是用来删除信号灯的.sem_wait调用将阻塞进程,直到信号灯的值大于0.这个函数返回 <BR>的时候自动的将信号灯的值的件一.sem_post和sem_wait相反,是将信号灯的内容加一同 <BR>时发出信号唤醒等待的进程..sem_trywait和sem_wait相同,不过不阻塞的,当信号灯的值 <BR>为0的时候返回EAGAIN,表示以后重试.sem_getvalue得到信号灯的值. <BR>由于<B >Linux</B>不支持,我们没有办法用源程序解释了. <BR>这几个函数的使用相当简单的.比如我们有一个程序要向一个系统打印机打印两页.我们 <BR>首先创建一个信号灯,并使其初始值为1,表示我们有一个资源可用.然后一个进程调用se <BR>m_wait由于这个时候信号灯的值为1,所以这个函数返回,打印机开始打印了,同时信号灯 <BR>的值为0 了. 如果第二个进程要打印,调用sem_wait时候,由于信号灯的值为0,资源不可 <BR>用,于是被阻塞了.当第一个进程打印完成以后,调用sem_post信号灯的值为1了,这个时候 <BR>系统通知第二个进程,于是第二个进程的sem_wait返回.第二个进程开始打印了. <BR>不过我们可以使用线程来解决这个问题的.我们会在后面解释什么是线程的.编译包含上 <BR>面这几个函数的程序要加上 -lrt选贤,以连接librt.so库 <BR>2。System V信号量 为了解决上面哪个问题,我们也可以使用System V信号量.很幸运的 <BR>是<B >Linux</B>实现了System V信号量.这样我们就可以用实例来解释了. System V信号量的函 <BR>数主要有下面几个. <BR>#include <sys/types.h> <BR>#include <sys/ipc.h> <BR>#include <sys/sem.h> <BR>key_t ftok(char *pathname,char proj); <BR>int semget(key_t key,int nsems,int semflg); <BR>int semctl(int semid,int semnum,int cmd,union semun arg); <BR>int semop(int semid,struct sembuf *spos,int nspos); <BR>struct sembuf { <BR>short sem_num; /* 使用那一个信号 */ <BR>short sem_op; /* 进行什么操作 */ <BR>short sem_flg; /* 操作的标志 */ <BR>}; <BR>ftok函数是根据pathname和proj来创建一个关键字.semget创建一个信号量.成功时返回 <BR>信号的ID,key是一个关键字,可以是用ftok创建的也可以是IPC_PRIVATE表明由系统选用 <BR>一个关键字. nsems表明我们创建的信号个数.semflg是创建的权限标志,和我们创建一个 <BR>文件的标志相同. <BR>semctl对信号量进行一系列的控制.semid是要操作的信号标志,semnum是信号的个数,cm <BR>d是操作的命令.经常用的两个值是:SETVAL(设置信号量的值)和IPC_RMID(删除信号灯). <BR>arg是一个给cmd的参数. <BR>semop是对信号进行操作的函数.semid是信号标志,spos是一个操作数组表明要进行什么 <BR>操作,nspos表明数组的个数. 如果sem_op大于0,那么操作将sem_op加入到信号量的值中 <BR>,并唤醒等待信号增加的进程. 如果为0,当信号量的值是0的时候,函数返回,否则阻塞直 <BR>到信号量的值为0. 如果小于0,函数判断信号量的值加上这个负值.如果结果为0唤醒等待 <BR>信号量为0的进程,如果小与0函数阻塞.如果大于0,那么从信号量里面减去这个值并返回 <BR>.. <BR>下面我们一以一个实例来说明这几个函数的使用方法.这个程序用标准错误输出来代替我 <BR>们用的打印机. <BR>#include <stdio.h> <BR>#include <unistd.h> <BR>#include <limits.h> <BR>#include <errno.h> <BR>#include <string.h> <BR>#include <stdlib.h> <BR>#include <sys/stat.h> <BR>#include <sys/wait.h> <BR>#include <sys/ipc.h> <BR>#include <sys/sem.h> <BR>#define PERMS S_IRUSR|S_IWUSR <BR>void init_semaphore_struct(struct sembuf *sem,int semnum, <BR>int semop,int semflg) <BR>{ <BR>/* 初始话信号灯结构 */ <BR>sem->sem_num=semnum; <BR>sem->sem_op=semop; <BR>sem->sem_flg=semflg; <BR>} <BR>int del_semaphore(int semid) <BR>{ <BR>/* 信号灯并不随程序的结束而被删除,如果我们没删除的话(将1改为0) <BR>可以用ipcs命令查看到信号灯,用ipcrm可以删除信号灯的 <BR>*/ <BR>#if 1 <BR>return semctl(semid,0,IPC_RMID); <BR>#endif <BR>} <BR>int main(int argc,char **argv) <BR>{ <BR>char buffer[MAX_CANON],*c; <BR>int i,n; <BR>int semid,semop_ret,status; <BR>pid_t childpid; <BR>struct sembuf semwait,semsignal; <BR>if((argc!=2)||((n=atoi(argv[1]))<1)) <BR>{ <BR>fprintf(stderr,"Usage:%s number\n\a",argv[0]); <BR>exit(1); <BR>} <BR>/* 使用IPC_PRIVATE 表示由系统选择一个关键字来创建 */ <BR>/* 创建以后信号灯的初始值为0 */ <BR>if((semid=semget(IPC_PRIVATE,1,PERMS))==-1) <BR>{ <BR>fprintf(stderr,"[%d]:Acess Semaphore Error:%s\n\a", <BR>getpid(),strerror(errno)); <BR>exit(1); <BR>} <BR>/* semwait是要求资源的操作(-1) */ <BR>init_semaphore_struct(&semwait,0,-1,0); <BR>/* semsignal是释放资源的操作(+1) */ <BR>init_semaphore_struct(&semsignal,0,1,0); <BR>/* 开始的时候有一个系统资源(一个标准错误输出) */ <BR>if(semop(semid,&semsignal,1)==-1) <BR>{ <BR>fprintf(stderr,"[%d]:Increment Semaphore Error:%s\n\a", <BR>getpid(),strerror(errno)); <BR>if(del_semaphore(semid)==-1) <BR>fprintf(stderr,"[%d]:Destroy Semaphore Error:%s\n\a", <BR>getpid(),strerror(errno)); <BR>exit(1); <BR>} <BR>/* 创建一个进程链 */ <BR>for(i=0;i<n;i++) <BR>if(childpid=fork()) break; <BR>sprintf(buffer,"[i=%d]-->[Process=%d]-->[Parent=%d]-->[Child=%d]\n", <BR>i,getpid(),getppid(),childpid); <BR>c=buffer; <BR>/* 这里要求资源,进入原子操作 */ <BR>while(((semop_ret=semop(semid,&semwait,1))==-1)&&(errno==EINTR)); <BR>if(semop_ret==-1) <BR>{ <BR>fprintf(stderr,"[%d]:Decrement Semaphore Error:%s\n\a", <BR>getpid(),strerror(errno)); <BR>} <BR>else <BR>{ <BR>while(*c!='\0')fputc(*c++,stderr); <BR>/* 原子操作完成,赶快释放资源 */ <BR>while(((semop_ret=semop(semid,&semsignal,1))==-1)&&(errno==EINTR)); <BR>if(semop_ret==-1) <BR>fprintf(stderr,"[%d]:Increment Semaphore Error:%s\n\a", <BR>getpid(),strerror(errno)); <BR>} <BR>/* 不能够在其他进程反问信号灯的时候,我们删除了信号灯 */ <BR>while((wait(&status)==-1)&&(errno==EINTR)); <BR>/* 信号灯只能够被删除一次的 */ <BR>if(i==1) <BR>if(del_semaphore(semid)==-1) <BR>fprintf(stderr,"[%d]:Destroy Semaphore Error:%s\n\a", <BR>getpid(),strerror(errno)); <BR>exit(0); <BR>} <BR>信号灯的主要用途是保护临界资源(在一个时刻只被一个进程所拥有). <BR>3。SystemV消息队列 为了便于进程之间通信,我们可以使用管道通信 SystemV也提供了 <BR>一些函数来实现进程的通信.这就是消息队列. <BR>#include <sys/types.h> <BR>#include <sys/ipc.h> <BR>#include <sys/msg.h> <BR>int msgget(key_t key,int msgflg); <BR>int msgsnd(int msgid,struct msgbuf *msgp,int msgsz,int msgflg); <BR>int msgrcv(int msgid,struct msgbuf *msgp,int msgsz, <BR>long msgtype,int msgflg); <BR>int msgctl(Int msgid,int cmd,struct msqid_ds *buf); <BR><BR>struct msgbuf { <BR>long msgtype; /* 消息类型 */ <BR>....... /* 其他数据类型 */ <BR>} <BR>msgget函数和semget一样,返回一个消息队列的标志.msgctl和semctl是对消息进行控制 <BR>.. msgsnd和msgrcv函数是用来进行消息通讯的.msgid是接受或者发送的消息队列标志. <BR>msgp是接受或者发送的内容.msgsz是消息的大小. 结构msgbuf包含的内容是至少有一个 <BR>为msgtype.其他的成分是用户定义的.对于发送函数msgflg指出缓冲区用完时候的操作. <BR>接受函数指出无消息时候的处理.一般为0. 接收函数msgtype指出接收消息时候的操作. <BR><BR>如果msgtype=0,接收消息队列的第一个消息.大于0接收队列中消息类型等于这个值的第 <BR>一个消息.小于0接收消息队列中小于或者等于msgtype绝对值的所有消息中的最小一个消 <BR>息. 我们以一个实例来解释进程通信.下面这个程序有server和client组成.先运行服务 <BR>端后运行客户端. <BR>服务端 server.c <BR>#include <stdio.h> <BR>#include <string.h> <BR>#include <stdlib.h> <BR>#include <errno.h> <BR>#include <unistd.h> <BR>#include <sys/types.h> <BR>#include <sys/ipc.h> <BR>#include <sys/stat.h> <BR>#include <sys/msg.h> <BR>#define MSG_FILE "server.c" <BR>#define BUFFER 255 <BR>#define PERM S_IRUSR|S_IWUSR <BR>struct msgtype { <BR>long mtype; <BR>char buffer[BUFFER+1]; <BR>}; <BR>int main() <BR>{ <BR>struct msgtype msg; <BR>key_t key; <BR>int msgid; <BR>if((key=ftok(MSG_FILE,'a'))==-1) <BR>{ <BR>fprintf(stderr,"Creat Key Error:%s\a\n",strerror(errno)); <BR>exit(1); <BR>} <BR>if((msgid=msgget(key,PERM|IPC_CREAT|IPC_EXCL))==-1) <BR>{ <BR>fprintf(stderr,"Creat Message Error:%s\a\n",strerror(errno)); <BR>exit(1); <BR>} <BR>while(1) <BR>{ <BR>msgrcv(msgid,&msg,sizeof(struct msgtype),1,0); <BR>fprintf(stderr,"Server Receive:%s\n",msg.buffer); <BR>msg.mtype=2; <BR>msgsnd(msgid,&msg,sizeof(struct msgtype),0); <BR>} <BR>exit(0); <BR>} <BR>---------------------------------------------------------------------------- <BR>---- <BR>客户端(client.c) <BR>#include <stdio.h> <BR>#include <string.h> <BR>#include <stdlib.h> <BR>#include <errno.h> <BR>#include <sys/types.h> <BR>#include <sys/ipc.h> <BR>#include <sys/msg.h> <BR>#include <sys/stat.h> <BR>#define MSG_FILE "server.c" <BR>#define BUFFER 255 <BR>#define PERM S_IRUSR|S_IWUSR <BR>struct msgtype { <BR>long mtype; <BR>char buffer[BUFFER+1]; <BR>}; <BR>int main(int argc,char **argv) <BR>{ <BR>struct msgtype msg; <BR>key_t key; <BR>int msgid; <BR>if(argc!=2) <BR>{ <BR>fprintf(stderr,"Usage:%s string\n\a",argv[0]); <BR>exit(1); <BR>} <BR>if((key=ftok(MSG_FILE,'a'))==-1) <BR>{ <BR>fprintf(stderr,"Creat Key Error:%s\a\n",strerror(errno)); <BR>exit(1); <BR>} <BR>if((msgid=msgget(key,PERM))==-1) <BR>{ <BR>fprintf(stderr,"Creat Message Error:%s\a\n",strerror(errno)); <BR>exit(1); <BR>} <BR>msg.mtype=1; <BR>strncpy(msg.buffer,argv[1],BUFFER); <BR>msgsnd(msgid,&msg,sizeof(struct msgtype),0); <BR>memset(&msg,'\0',sizeof(struct msgtype)); <BR>msgrcv(msgid,&msg,sizeof(struct msgtype),2,0); <BR>fprintf(stderr,"Client receive:%s\n",msg.buffer); <BR>exit(0); <BR>} <BR>注意服务端创建的消息队列最后没有删除,我们要使用ipcrm命令来删除的. <BR>4。SystemV共享内存 还有一个进程通信的方法是使用共享内存.SystemV提供了以下几个 <BR>函数以实现共享内存. <BR>#include <sys/types.h> <BR>#include <sys/ipc.h> <BR>#include <sys/shm.h> <BR>int shmget(key_t key,int size,int shmflg); <BR>void *shmat(int shmid,const void *shmaddr,int shmflg); <BR>int shmdt(const void *shmaddr); <BR>int shmctl(int shmid,int cmd,struct shmid_ds *buf); <BR>shmget和shmctl没有什么好解释的.size是共享内存的大小. shmat是用来连接共享内存 <BR>的.shmdt是用来断开共享内存的.不要被共享内存词语吓倒,共享内存其实很容易实现和 <BR>使用的.shmaddr,shmflg我们只要用0代替就可以了.在使用一个共享内存之前我们调用s <BR>hmat得到共享内存的开始地址,使用结束以后我们使用shmdt断开这个内存. <BR>#include <stdio.h> <BR>#include <string.h> <BR>#include <errno.h> <BR>#include <unistd.h> <BR>#include <sys/stat.h> <BR>#include <sys/types.h> <BR>#include <sys/ipc.h> <BR>#include <sys/shm.h> <BR>#define PERM S_IRUSR|S_IWUSR <BR>int main(int argc,char **argv) <BR>{ <BR>int shmid; <BR>char *p_addr,*c_addr; <BR>if(argc!=2) <BR>{ <BR>fprintf(stderr,"Usage:%s\n\a",argv[0]); <BR>exit(1); <BR>} <BR>if((shmid=shmget(IPC_PRIVATE,1024,PERM))==-1) <BR>{ <BR>fprintf(stderr,"Create Share Memory Error:%s\n\a",strerror(errno)); <BR>exit(1); <BR>} <BR>if(fork()) <BR>{ <BR>p_addr=shmat(shmid,0,0); <BR>memset(p_addr,'\0',1024); <BR>strncpy(p_addr,argv[1],1024); <BR>exit(0); <BR>} <BR>else <BR>{ <BR>c_addr=shmat(shmid,0,0); <BR>printf("Client get %s",c_addr); <BR>exit(0); <BR>} <BR>} <BR>这个程序是父进程将参数写入到共享内存,然后子进程把内容读出来.最后我们要使用ip <BR>crm释放资源的.先用ipcs找出ID然后用ipcrm shm ID删除. <BR>后记: <BR>进程通信(IPC)是网络程序的基础,在很多的网络程序当中会大量的使用进程通信的概念 <BR>和知识.其实进程通信是一件非常复杂的事情,我在这里只是简单的介绍了一下.如果你想 <BR>学习进程通信的详细知识,最好的办法是自己不断的写程序和看联机手册.现在网络上有 <BR>了很多的知识可以去参考.可惜我看到的很多都是英文编写的.如果你找到了有中文的版 <BR>本请尽快告诉我.谢谢! <BR> |