马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
- SamNum = 100; % 总样本数
- TestSamNum = 101; % 测试样本数
- InDim = 1; % 样本输入维数
- ClusterNum = 10; % 隐节点数,即聚类样本数
- Overlap = 1.0; % 隐节点重叠系数
- % 根据目标函数获得样本输入输出
- rand('state',sum(100*clock))
- NoiseVar = 0.1;
- Noise = NoiseVar*randn(1,SamNum);
- SamIn = 8*rand(1,SamNum)-4;
- SamOutNoNoise = 1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2);
- SamOut = SamOutNoNoise + Noise;
- TestSamIn = -4:0.08:4;
- TestSamOut = 1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(-TestSamIn.^2/2);
- figure
- hold on
- grid
- plot(SamIn,SamOut,'k+')
- plot(TestSamIn,TestSamOut,'k--')
- xlabel('Input x');
- ylabel('Output y');
- Centers = SamIn(:,1:ClusterNum);
- NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零
- IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号
- while 1,
- NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零
- IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号
- % 按最小距离原则对所有样本进行分类
- for i = 1:SamNum
- AllDistance = dist(Centers',SamIn(:,i));
- [MinDist,Pos] = min(AllDistance);
- NumberInClusters(Pos) = NumberInClusters(Pos) + 1;
- IndexInClusters(Pos,NumberInClusters(Pos)) = i;
- end
- % 保存旧的聚类中心
- OldCenters = Centers;
- for i = 1:ClusterNum
- Index = IndexInClusters(i,1:NumberInClusters(i));
- Centers(:,i) = mean(SamIn(:,Index)')';
- end
- % 判断新旧聚类中心是否一致,是则结束聚类
- EqualNum = sum(sum(Centers==OldCenters));
- if EqualNum == InDim*ClusterNum,
- break,
- end
- end
- % 计算各隐节点的扩展常数(宽度)
- AllDistances = dist(Centers',Centers); % 计算隐节点数据中心间的距离(矩阵)
- Maximum = max(max(AllDistances)); % 找出其中最大的一个距离
- for i = 1:ClusterNum % 将对角线上的0 替换为较大的值
- AllDistances(i,i) = Maximum+1;
- end
- Spreads = Overlap*min(AllDistances)'; % 以隐节点间的最小距离作为扩展常数
- % 计算各隐节点的输出权值
- Distance = dist(Centers',SamIn); % 计算各样本输入离各数据中心的距离
- SpreadsMat = repmat(Spreads,1,SamNum);
- HiddenUnitOut = radbas(Distance./SpreadsMat); % 计算隐节点输出阵
- HiddenUnitOutEx = [HiddenUnitOut' ones(SamNum,1)]'; % 考虑偏移
- W2Ex = SamOut*pinv(HiddenUnitOutEx); % 求广义输出权值
- W2 = W2Ex(:,1:ClusterNum); % 输出权值
- B2 = W2Ex(:,ClusterNum+1); % 偏移
- % 测试
- TestDistance = dist(Centers',TestSamIn);
- TestSpreadsMat = repmat(Spreads,1,TestSamNum);
- TestHiddenUnitOut = radbas(TestDistance./TestSpreadsMat);
- TestNNOut = W2*TestHiddenUnitOut+B2;
- plot(TestSamIn,TestNNOut,'k-')
- W2
- B2
复制代码 |