Events
An Event consists of a collection of elementary mesh operations which occur at a given point in time. Events are classified into three categories, Absolute Events, Conditional Events and Sliding Events.
• Absolute events occur at a predefined time. Each such event can have the a number of Elementary operations contained within, which are all executed when the solution time crosses the event time.
• Conditional events occur when released by a user subroutine, typically based upon the flow conditions. Only three elementary operations: ATTACH, DETACH and CHANGE FLUID are allowed in conditional events
Conditional events must be Enabled by an absolute event before they are active. The user subroutine is then repeatedly called until the conditional event is either executed, or is Disabled by another absolute event
• Sliding events resemble Conditional events in that they need to be enabled by an absolute event. After that point, they remain continuously active. Sliding events consist of only one elementary event type: the arbitrary attach. The event defines the master and slave faces; At each time step, while the sliding event is active, these faces are rematched by STAR based upon the current vertex positions.
Elementary operations
As discussed, Events consist of elementary mesh operations. It must be emphasized that these operations (except the EGRID operation) only change the connectivity, not the vertex locations. For instance, deactivating a cell layer will leave a "hole" in the model unless the vertices of the surviving cells are moved. The following operations are defined in STAR-CD
• Cell Layer Deactivation (EDCELL) and Activation (EACELL)
In the case of cell layer deactivation, an entire layer of cells can be collapsed in a given direction. The original neighbours of the cell in the direction of collapse are directly attached to each other, so that this cell drops out of the model. Two adjacent layers cannot be collapsed at the same time step.
Cell layers previously deactivated can be reactivated by the Activation event. These cells reappear with the neighbours that they had at the time of deactivation.
• Cell Attachment (EATTACH) and Detachment (EDETACH)
Cell attachment specifies a set of boundary couples that should be treated as attached. These boundaries must belong to regions of type ATTACH. Once a boundary pair is attached, it remains attached until it is explicitly detached, one of the pair is reattached to another boundary, or one of the partner cells is deactivated. Any unattached boundaries of type ATTACH are assumed to belong to the WALL region number specified in the region definition.
Cell detachment specifies a boundary of type ATTACH to be detached i.e. connected to the appropriate wall region. If this boundary is currently connected, the other side is also implicitly detached.
• Cell Exclusion (EECELL)and Cell Inclusion(EICELL)
Cell exclusion specifies a list of cells which will no longer be solved for. Unlike the Deactivation operation, these cells need not represent one layer. However, the excluded cells should not have any connections to active cells ie. only a separated block of cells can be excluded (Eg. the intake port and manifold after the intake valve closes).
Cells previously excluded can be brought into the solution again using the Include event. The solution field in these cells can be reinitialized, or restored to the situation at the time of their exclusion.
• Cell Fluid Stream Change
Specifies a list of cells to be changed to a different fluid stream (i.e. material type). This would become necessary if a series of cell DETACHMENTS created isolated regions of the domain which are not connected to the pressure reference cell.
• Conditional Event Enable and Disable
These operations allow conditional events to be enabled/disabled. While the conditional event is enabled, a user subroutine is called at each time step to check if the conditional event is to be executed. The conditional event is automatically disabled after it is executed.
A conditional event disable command is used to disable a conditional event, and is ignored if the conditional event is not currently enabled.
• Sliding Event Enable and Disable
These operations allow sliding events to be enabled/disabled.
Once a sliding event is enabled, the corresponding faces are rematched by STAR at each time step. This continues even if there are no more events ie. even after the events file is closed
The sliding event disable operation is only needed if the attached faces are to be detached (eg. a valve closes). The detached faces are then treated as the wall region defined in the attach boundar region definition.
• Change Geometry (EGRID)
This operation specifies a list of PROSTAR commands which will be executed at each time step from this point on. More than one absolute event may contain an EGRID operation, in which case the latest set of PROSTAR commands will be used. Note that this is the only elementary operation that results in the vertices being moved. |