<FONT size=2>5.5.2 模糊神经控制方案<BR><BR>许多把模糊逻辑描述与神经网络实现集成于一体的方案已被提了出来,其中最令人鼓舞的是自适应模糊控制系统的研究。这些方案主要分为两个方面,即结构上等价于模糊系统的NN控制以及功能上等价于模糊系统的NN控制。下面讨论一些集成模糊逻辑与神经网络的典型方案,它们用于控制、建模与辨识。 <BR><BR>1. 混合FNN<BR>本方案中,神经网络与模糊集被独立地用于系统,两者之一作为另一者的预处理器。例如,模糊集用作神经网络的监督器(导师)或判据,以便改善学习的收敛性,如图5.34所示。 <BR><BR><BR>图5.34 混合FNN <BR><BR>2. 似神经模糊集(FAM)<BR>在这种方案中,FNN采用由模糊集(而不是非模糊神经元)描述的模糊神经元。在基于知识的系统中,一个条件语句集合,IF-THEN规则集常常用于表示从人类专家那里提取的知识。这种知识通常又与不确定性和模糊项有关,如大、小、高、低、许多、经常、有时等。因此,IF-THEN规则的前项和后项作为模糊集来处理。图5.35提出一种FNN结构。其中FNN把输入参数聚集进模糊子空间,并由加权网络来辨识输入输出关系,这是以简化模糊推理为基础的。在图5.35中,Aip为第i个输入变量xi的隶属函数,i=1,2,...,n;wp为第p条规则的后项。单条规则的结果如下:<BR>(5.32)<BR>所以,可得FNN的输出为:<BR>(5.33) <BR><BR><BR>图5.35 一种神经状模糊集的结构 <BR><BR>另一种似神经模糊系统FAM(模糊联想记忆系统)是由Kosko提出的。FAM是模糊系统 ,它由一简单的似神经方法构造的,而且采用一个两层前馈多联想模糊分类器来存储任意的模糊空间模式对。在自组织模糊控制器中,使用两个动态FAM规则库,即控制规则库和调整规则库。此方法具有改善的控制性能,但它的缺点是使用模糊运算以及采用学习算法。进一步研究应集中开发用于FAM的更有效和合适的学习算法。 <BR><BR>3. 自适应FNN<BR>在FNN的发展过程中,提出了一种由神经网络实现的自适应模糊逻辑控制器。该神经网络可视为从模糊系统到神经网络的一种结构映射。模糊逻辑控制器的决策过程导致一个由三类子网构成的神经模糊网络,分别用于模式识别、模糊推理和控制综合,如图5.36所示。嵌入本结构网络的统一知识结构使得本网络能够为输入信号模式和输出控制作用自适应改变模糊推理方法和隶属函数。Wang也提出用于网络优化的基于梯度法的离线训练规则和在线学习算法。 <BR><BR><BR>图5.36 FNN的三个子网络 <BR><BR>另一种自适应FNN是基于自适应网络的模糊推理系统ANFIS;以人类知识(以模糊IF-THEN规则形式)和约定的输入输出数据对为基础,本系统能够构造一个输入输出映射。ANFIS结构用于在线非线性函数建模、辨识控制系统的非线性分量以及预测混浑时间序列等。 <BR><BR>4. 多层FNN<BR>一种叫做FuNe的专用多层感知器结构被用来建立模糊系统,适于许多实际应用。由监督式学习训练的FuNe可被用于从某个已知的有代表性的输入输出提取模糊规则。此外,通过校正隶属函数可能进行知识库优化。FuNe也是模糊逻辑控制器与神经网络间的一一对应结构映射,它由三个子网组成,即模糊化网络、规则产生网络和模糊决策(解模糊)网络,每个子网又可能是个多层神经网络。图5.37给出一个用于控制与决策的五层模糊神经网络,其中,第1层由输入语言节点组成,第2层为输入项节点,第3层为规则节点,第4层为输出项节点,第5层为输出语言节点。由图5.37可见,每个输出变量包括两个语言节点,左边的节点用作送至本网络的训练数据(期望输出),右边的另一个节点用作由本网络取出的决策信号(实际输出)。第2层和第4层作为隶属函数用于表示各个语言变量的项。此外,第2层的一个节点可为执行简单隶属函数的单节点,也可为执行复杂隶属函数的多层复合节点(一个子神经网)。因此,该模型的总层数可能多于五层。在网络结构和学习能力方面,所提出的这种连接机制模型可能与常规模糊逻辑控制和决策系统大不相同。这种模糊网络可应用机器学习技术通过训练例子来构造,而连接机制结构中被训练用于开发模糊逻辑规则以及求得最优输入输出隶属函数。借助于无师(自组织)学习和有师学习方案的结合,学习收敛速度要比原有的反向传播学习算法快得多。本模型还为标准的前馈多层神经网络提供能为人所理解的意思。 <BR><BR><BR>图5.37 多层FNN例子 <BR><BR>5.6 神经控制系统示例 <BR><BR>神经网络近年来已被广泛用于工业、商业和科技部门,特别用于模式识别、图象处理和信号辨识等领域。尽管神经网络在控制领域成功应用的实例至今仍然比较有限,然而有代表性的关于神经控制的报导有所增加。本节将介绍一个为高速列车运行过程直接模糊神经控制系统的例子。<BR><BR><BR>5.6.1 高速列车运行过程的直接模糊神经控制<BR><BR>随着微型计算机技术的发展,近年来,自动列车运行(ATO)系统已成为全民办铁道自动化的一个研究热点。但是,由于受控过程的复杂,ATO系统通常还不如熟练的操作人员。如所周知,列车运行过程受到许多不确定因素的影响,属于一类复杂动力学过程,难以采用常规辨识方法进行建模。在不同的工作条件下,控制目标和控制策略随过程特性的变化而大不相同,以至传统的基于ATO系统的控制理论很难适应过程要求。所以,以有熟练的司机经验为基础的列车运行过程智能控制系统在过去10年中已被提出,其中包括Yasumobu提出的模糊ATO以及贾等提出的模糊多目标最优控制(FMOC)ATO等。这些智能控制ATO系统的目标在于以模糊集理论为基础,从熟练的司机经验中提取出控制规则,以构造模糊控制器。虽然这些系统已取得一些令人鼓舞的计算机模糊和实际应用结果,包括场试,但是它们存在下列两个共同缺点:(1)模糊语言变量的划分和隶属函数的形状在很大程度上取决于专家经验,因而很难进行在线调整;(2)模糊推理方法不大适应于控制。简而言之,仅仅采用模糊控制方法是很难进一步改进ATO系统性能的。<BR>在本例中,我们把神经网络的学习能力加入模糊系统,建立一个列车运行过程的直接模糊神经控制。本集成系统包含了模糊系统和神经网络的互补特性,改善了常规模糊系统在系统参数变化时的适应能力。 <BR><BR>1. 模糊神经控制器<BR>由于模糊逻辑与神经网络特性上的互补,它们是实现语言知识表示和自适应知识发展这两种人类控制基于特征的理想工具,因而对模糊控制与神经网络熔合的研究已成为近年来一个活跃的研究领域。目前,这些集成方法主要可分为两类:一为分别应用相应的神经网络使它们在结构上等价于模糊器、模糊规则库和解模糊器,直接实现模糊控制系统。这种方法中,原来的模糊系统的知识结构受到学习速度缓慢的约束。另一为通过神经网络,在功能上等价于模糊系统。在我们开发的模糊神经控制器中,考虑采用了第二种集成方法。<BR>(1)控制器结构<BR>模糊系统和神经网络在非线性映射和近似能力方面的相似性为把神经网络的学习能力集成进模糊系统提供了一个机会。因此,我们采用多层前向神经网络来实现模糊系统内的映射。该模糊神经控制器的结构图示于图5.38。为不失一般性,我们考虑具有两个输入变量和一个输出变量的模糊系统。 <BR><BR><BR>图5.38 用于列车运行过程的模糊神经控制器的结构 <BR><BR>正如图5.38所示,本模糊神经系统共有五层。第一层的节点为输入节点(语言节点),它表示列车运行过程的输入语言变量,而且与第二层没有权值关系。第五层为输出层,它执行解模糊过程。在这种情况下,应用域心法(COA),可得系统的解模糊输出为:<BR>(5.34)<BR>第二层由隶属函数节点组成,它们表示输入语言变量的全部模糊集,并完成从精确输入值至模糊值的映射。第三层为中间层,其节点没有明确的意义。第四层的节点表示输出变量(-6至+6)离散域内的点。十分明显,连接 [wij] 和 [wjk]被训练来表示控制规则。在第三层和第四层的节点的实际函数为S函数,如下式所示:f(X) =1/(1+e-x)。采用这个五层结构的连接机制模型,该模糊系统的全过程,从模糊化、模糊推理到解模糊化,都能够通过神经网络的正向计算来执行。<BR>(2)建立模糊关系<BR>模糊系统的模糊关系,即模糊规则库能够通过学习程序用神经网络的权值并行存储。为便于讨论,假定模糊控制器具有两个输入(A和B)以及一个输出C。A、B和C的模糊集被定义为{NB, NM, NS, ZE, PS, PM, PB},它们的隶属函数为三角形的,如图5.39所示。 <BR><BR><BR>图5.39 模糊神经系统的隶属函数 <BR><BR>模糊规则库包含下列六条规则:<BR>R1:IF (A is PB and B is PB) THEN C is PB.<BR>R2:IF (A is PM and B is PB) THEN C is PM.<BR>R3:IF (A is PS and B is PS) THEN C is ZE.<BR>R4:IF (A is PM and B is NB) THEN C is NM.<BR>R5:IF (A is PS and B is NM) THEN C is NS.<BR>R6:IF (A is PS and B is NS) THEN C is ZE. (5.35) <BR>于是,与输入模糊集的隶属函数相对应的第二层输入可表示为:<BR>[mNB(a),mNM(a),...,mPB(a),mNB(b),...,mPM(b),mPB(b)] (5.36)<BR>第四层的输出为输出模糊集的隶属函数,可表示为:<BR>[mC(-6),mC(-5),...,mC(-1),mC(0),mC(1),...,mC(5),mC(6)] (5.37)<BR>对应的训练样本能够表示;例如,对于规则R1 ,存在<BR>输入样本:[0,0,0,0,0,0,1; 0,0,0,0,0,0,1]<BR>输出样本:[0,0,0,0,0,0,0,0,0,0,0.5,1,0.5,0] (5.38)<BR>对于其它规则,其训练样本与式(5.38)相似。<BR>基于上述学习样本,采用误差反向传播学习算法来训练神经网络。经过学习后,所有模糊规则可以网络的权保持。规则的增加与/或更新可由增加和/或更新训练数据集来完成。此外,计算负担较轻。<BR>(3)模糊推理<BR>原有模糊系统的模糊推理可由基于下列两种原理的模糊神经网络的并行计算来实现:<BR>a. 当输入模糊集A和B与Ak和Bk相似时,模糊蕴涵Ak,Bk®Ck被激发,那么,输出模糊集C与Ck相似。<BR>b. 当输入模糊集与样本模糊集不同时,一个模糊蕴涵序列将被激发至不同程度,那么,输出是对应的被激发规则的非线性插值。每条规则的强调程度可描述为:<BR>(5.39)<BR>式中,Xk为训练输入信号,而X为当前输入信号。 <BR><BR>2. 列车运行过程的数学描述<BR>为便于模拟,下面提供一种列车运行过程的近似数学描述,它是以复杂动力学过程的过程划分为基础的。列车运行过程是很复杂的,而且受许多不确定因素的影响;这些因素有铁路条件(弯曲和坡度)、运动速度、环境(气候)条件和工作条件等。很难给出一个列车运行过程的精确数学模型。因此,从工程实际观点出发,采用下列模型:<BR>(5.40)<BR>式中,x 为加速度系数(km/h),通常对电气机车取120,对于高速列车,取250-300;f(n,v)为单式联轴节作用力(knf);n为控制(速度)档级;v为列车移动速度(km/h);P为机车重(knf);G为车的总重量(knf);F(n,v)为联轴节作用力,可由下式计算:<BR>F(n,v)=Fq(n,v)-Bd(n,v)-Bp(r,v)-(P +G)[W0(v)+W1(v)] (5.41) <BR>其中,Fq(n,v)为机车牵引力,Bd(n,v)为机车动力制动力;Bp(n,v)为气动制动力;r为气管的压力减小率;W0(v)为列车的阻力(nf/kn); W1(v)为轨道弯曲、坡度和隧道等引起的附加阻力(nf/kn)。<BR>根据不同工作条件列车运行过程的特征,可把它划分为五个具有不同控制目标的在特性上有区别的子过程,它们是从静止加速子过程(SUPI)、加速子过程(SUP)、恒速子过程(CSP)、调速子过程(SAP)和列车停车子过程(TSP)。对于不同的子过程,力F(n,v)是不同的。因此,对应于不同的子过程我们有五种不同的过程模型,而且需要五个模糊神经控制器,它们包含五种不同的控制规则。 <BR><BR>3. 模拟结果<BR>基于提出的模糊神经控制器的列车运行过程闭环控制系统如图5.40所示。 <BR><BR><BR><BR>图5.40 列车运行过程闭环控制系统框图 <BR><BR>选用“8k”电气机车作为典型的模拟试机(车),它以1000t的牵引力驱动列车运行在几个有代表性的具有不同环境条件的路段。对应不同的子过程,采用五个模糊神经控制器。这五个模糊神经控制器的结构一般上与图5.38的结构相似,只是输入变量的调整及输出变量的论域有所不同。例如,对于SUP子系统,Vp =V0 -V(即给定速度与实际运动速度之差)以及Vs =V0 -Vd(即给定速度与控制等级设计速度之差)被用作网络的输入变量,而牵引速度挡级用作输出变量。训练规则如式(5.35)所示。第三层有八个节点,而且神经网络的初始权值为[-0.5,0.5]范围内的随机值。BP学习算法用于训练控制器,而且学习速率为0.15,允许误差为0.01。<BR><BR>4. 进一步研究课题<BR>本研究基于模糊神经控制器,提出了一种实现自动列车运动操作的新方案,并获得满意的模拟结果。借助于把神经网络结合进模糊系统,本方法提供了一种达到自适应模糊控制的有意义尝试。进一步研究的问题如下:<BR>(1)基于模糊神经网络的复杂动态系统的建模。<BR>(2)研究比本例采用的常规反向传播学习算法更优良更有效的学习算法。<BR>(3)从提取专家经验得到的控制规则变换为训练数据集,例如,一条模糊控制规则可能对应于一组训练样本。<BR><BR>5.7 小结 <BR><BR>本章首先简介人工神经网络及其结构和实例,然后以控制工程师熟悉的语言和图示介绍神经控制器的各种基本结构方案,包括基于神经网络的学习控制器、基于神经网络的直接逆控制器、基于神经网络的自适应控制器、基于神经网络的内模控制器、基于神经网络的预测控制器、基于神经网络的自适应强化控制器、基于小脑模型(CMAC)的控制器、多层神经网络控制器以及分级神经网络控制器等。这些结构方案可用于组成更复杂的神经控制器。本章的重点放在控制用模糊神经网络(FNN)及模糊逻辑与神经网络的集成方案上,后者对于研究自适应模糊控制系统是最令人鼓舞的。这些方案总体上可分为两类,即结构等价模糊系统和功能等价模糊系统。FNN控制的典型方案则包括混合FNN、类神经模糊集(FAM)、自适应FNN以及多层FNN等。本章最后讨论了列车运行过程的直接模糊神经控制应用示例。<BR>自从McCulloch和Pitts在1943年开始研究ANN以来,已经作出许多努力开发各种有效的ANN,用于模式识别、图象和信号处理和监控。然而,由于技术的现实性,尤其是计算机技术和VLSI技术当前水平的局限性,这些努力并非总是如愿以偿的。随着计算机软件和硬件技术的进展,自80年代以来,出现了一股开发ANN的新热潮。十多年已经过去,可是,许多把ANN应用于控制领域的努力仍然收效甚微。其主要困难在VLSI意义上的人工神经网络的设计和制造问题。要解决这一问题,研究人员可能还需要继续走一段很长的路。人工神经网络与模糊逻辑、专家系统、自适应控制,甚至PID控制的集成,有希望为智能控制创造出优良制品。</FONT><BR> |