|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
請問這有什麼問題呢,我用它計算模型的位移,發覺跟時域分析結果差一千倍function [eta,yim]=fediresp(M,K,F,u,t,C,q0,dq0,a,b);
%----------------------------------------------------------------------------------
% Purpose:
% The function subroutine fediresp.m calulates impulse response
% for a damped structural system using modal analysis. It uses modal
% coordinate equations to evaluate modal responses anaytically, then
% convert modal coordinates into physical responses
%
% Synopsis:
% [eta,yim]=fediresp(M,K,F,u,t,C,q0,dq0,a,b)
%
% Variable Description:
% Input parameters - M, K - Mass and stiffness matrices
% F - Input or forcing influence matrix
% t - Time of evaluation
% u - Index for excitation
% C - Output matrix
% q0, dq0 - Initial conditions
% a, b - Parameters for proportional damping [C]=a[M]+b[K]
% Outpur parameters - eta - modal coordinate response
% y - physical coordinate response
%---------------------------------------------------------------------------------
disp(' ')
disp('Please wait!! - The job is being performed.')
%---------------------------------------------------------------
% Solve the eigenvalue problem and normalize the eigenvectors
% --------------------------------------------------------------
[n,n]=size(M);[n,m]=size(F);
nstep=size(t');
[V,D]=eig(K,M);
[lambda,k]=sort(diag(D)); % Sort the eigenvaules and eigenvectors
V=V(:,k);
Factor=diag(V'*M*V);
Vnorm=V*inv(sqrt(diag(Factor))); % Eigenvectors are normailzed
omega=diag(sqrt(Vnorm'*K*Vnorm)); % Natural frequencies
Fnorm=Vnorm'*F;
%----------------------------------------------------------------------------
% Compute modal damping matrix from the proportional damping matrix
%----------------------------------------------------------------------------
Modamp=Vnorm'*(a*M+b*K)*Vnorm;
zeta=diag((1/2)*Modamp*inv(diag(omega)))
if (max(zeta) >= 1),
disp('Warning - Your maximu damping ratio is grater than or equal to 1')
disp('You have to reselect a and b ')
else
pause
disp('If you want to continue, type return key')
end
%----------------------------------------------------------------------
% Find out impulse response of each modal coordinate analytically
%-------------------------------------------------------------------
eta0=Vnorm'*M*q0; % Initial conditions for modal coordinates
deta0=Vnorm'*M*dq0; % - both displacement and velocity
eta=zeros(nstep,n);
for i=1:n % Responses are obtained for n modes
omegad=omega(i)*sqrt(1-zeta(i)^2);
phase=omegad*t;
tcons=zeta(i)*omega(i)*t;
eta(:,i)=exp(-tcons)'.*(eta0(i)*(cos(phase')+zeta(i)/sqrt(1-zeta(i)^2)*...
sin(phase'))+deta0(i)*sin(phase')/omegad+sin(phase')*Fnorm(i,u)/omegad);
end
%-----------------------------------------------------------------------
% Convert modal coordinate responses to physical coordinate responses
%-----------------------------------------------------------------------
yim=C*Vnorm*eta';
%-----------------------------------------------------------------------
|
|