基于最大Lyapunov指数的预测的问题
吕金虎《混沌时间序列分析及其应用》P108韩敏《混沌时间序列预测理论与方法》P168
对数据data: x(1)……x(n)进行相空间重构后得到:Y1……YM
Yi={x(ti),x(ti+tau),……,x(ti+m*tau) } 其中tau为时间延迟,m为嵌入维数,M=n-(m-1)tau
预测公式:
‖YM- YM+1‖=‖Yk- Yk+1‖ (1)其中YM为预测中心点,Yk为YM的最邻近点,最大Lyapunov指数为λ1。
公式(1)中只有最后一个分量x(tn+1)未知。
设 ‖Yk- Yk+1‖=d,则公式(1)变为:
(‖Yk- Yk+1‖ )^2=d*eλ1 (2)
同时根据向量距离的计算公式得:
(‖YM- YM+1‖)^2= (x(tM)- x(tM+1)) ^2+(x(tM+tau)-x(tM+1+tau)) ^2+……+(x(tn-tau)- x(tn+1-tau))^2+(x(tn)-x(tn+1))^2 (3)公式(3)中只有x(tn+1)未知。(1)(2)(3)合并得:
(x(tn)-x(tn+1))^2=(d*eλ1)^2-[(x(tM)-x(tM+1))^2+(x(tM+tau)-x(tM+1+tau))^2+……+(x(tn-tau)-x(tn+1-tau))^2] (4)对公式(4)两边开平方:
|x(tn)- x(tn+1)|={(d*eλ1)^2-[(x(tM)- x(tM+1)) ^2+(x(tM+tau)-x(tM+1+tau)) ^2+……+(x(tn-tau)- x(tn+1-tau))^2]}^0.5 (5)这时候问题出现了:
公式(5)左边去掉绝对值后是正号还是负号?如何确定?
页:
[1]