请教matlab的曲面间交线作图问题
请问如何用matlab画出两个曲面之间的交线。例如,x^2+y^2+z^2=1与x^2-x+y^2=0的交线,最好能将这两个曲面画出来,交线用深颜色表示。
[ 本帖最后由 ChaChing 于 2009-2-27 17:40 编辑 ] 套用一下下面的程序<BR><BR>clf, a=-20;eps0=1;<p></p>
<Palign=left>=meshgrid(-10:0.2:10);%生成平面网格<p></p></P>
<Palign=left>v=[-10 10 -10 10 -100 100];%设定空间坐标系的范围<p></p></P>
<Palign=left>colormap(gray) %将当前的颜色设置为灰色<p></p></P>
<Palign=left>z1=(x.^2-2*y.^2)+eps; %计算马鞍面函数z1=z1(x,y)<p></p></P>
<Palign=left>z2=a*ones(size(x)); %计算平面 z2=z2(x,y)<p></p></P>
<Palign=left>r0=abs(z1-z2)<=eps0; <p></p></P>
<Palign=left> %计算一个和z1同维的函数r0,当abs(z1-z2)<=eps时r0 =1;当abs(z1-z2)>eps0时,r0 =0。<p></p></P>
<Palign=left> %可用mesh(x,y,r0)语句观察它的图形,体会它的作用,该方法可以套用。<p></p></P>
<Palign=left>zz=r0.*z2;xx=r0.*x;yy=r0.*y; %计算截割的双曲线及其对应的坐标<p></p></P>
<Palign=left>subplot(2,2,2), %在第2图形窗口绘制双曲线<p></p></P>
<Palign=left> h1=plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'+'); <p></p></P>
<Palign=left> set(h1,'markersize',2),hold on,axis(v),grid on<p></p></P>
<Palign=left>subplot(2,2,1), %在第一图形窗口绘制马鞍面和平面 <p></p></P>
<Palign=left> mesh(x,y,z1);grid,hold on;mesh(x,y,z2); <p></p></P>
<Palign=left> h2=plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'.'); %画出二者的交线<p></p></P>
<Palign=left> set(h2,'markersize',6),hold on,axis(v),<p></p></P>
<Palign=left>for i=1:5 %以下程序和上面是类似的,通过循环绘制一系列的平面去截割马鞍面<p></p></P>
<Palign=left> a=70-i*30; %在这里改变截割平面<p></p></P>
<Palign=left> z2=a*ones(size(x)); r0=abs(z1-z2)<=1;zz=r0.*z2;yy=r0.*y;xx=r0.*x;<p></p></P>
<Palign=left> subplot(2,2,3),<p></p></P>
<Palign=left> mesh(x,y,z1);grid,hold on;mesh(x,y,z2);hidden off<p></p></P>
<Palign=left> h2=plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'.'); axis(v),grid<p></p></P>
<Palign=left> subplot(2,2,4),<p></p></P>
<Palign=left> h4=plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'o');<p></p></P>
<Palign=left> set(h4,'markersize',2),hold on,axis(v),grid on<p></p></P>
<Palign=left>end</P> 转自《工程计算可视化与MATLAB实现》尚涛等编著 武汉大学出版社<BR>------------动力与控制论坛.paradiseboy<BR>两<FONT style="BACKGROUND-COLOR: #ffff00"><PARSE>直线相交</PARSE></FONT><BR><BR>function =pll(X1,Y1,X2,Y2)<BR><BR>% <FONT style="BACKGROUND-COLOR: #ffff00"><PARSE>直线相交</PARSE></FONT>求交点<BR><BR>A1=Y1(1)-Y1(2);<BR>B1=X1(2)-X1(1);<BR>C1=Y1(2)*X1(1)-Y1(1)*X1(2);<BR>A2=Y2(1)-Y2(2);<BR>B2=X2(2)-X2(1);<BR>C2=Y2(2)*X2(1)-Y2(1)*X2(2);<BR>D=det();<BR>X=det([-C1 B1;-C2 B2])/D;<BR>Y=det()/D;<BR><BR>调用格式:<BR><BR>x1=;y1=;x2=;y2=;<BR>=pll(x1,y1,x2,y2);<BR>plot(x1,y1,'r');<BR>hold on<BR>plot(x2,y2,'b');<BR>plot(x,y,'ko');<BR><BR>%直线与多条<FONT style="BACKGROUND-COLOR: #ffff00"><PARSE>直线相交</PARSE></FONT><BR><BR>xi=;yi=;<BR>plot(xi,yi);hold on<BR>x1=;y1=;line(x1,y1);<BR>x=zeros(size(xi));<BR>y=x;<BR>for i=1:5-1<BR>x2=xi();y2=yi();<BR>=pll(x1,y1,x2,y2);<BR>plot(x,y,'ro')<BR>end<BR><BR>%直线与曲线相交<BR><BR>x=-8:0.1:8;y=x;=meshgrid(x,y);<BR>R=sqrt(X.^2+Y.^2)+eps;Z=sin(R)./R;<BR>contour(Z,3);hold on<BR>c=contour(Z,3);<BR>x=;y=;<BR>y=(y(2)-y(1))/(x(2)-x(1))*(x-x(1))+y(1);z=;<BR>line(x,y,z);c=c';<BR>X=c(:,1);Y=c(:,2);<BR>r0=abs(Y-(y(2)-y(1))/(x(2)-x(1))*(X-x(1))+y(1))<=.93;<BR>zz=0;yy=r0.*Y;xx=r0.*X;<BR>plot(xx(r0~=0),yy(r0~=0),'r')<BR><BR>%曲线与曲线相交<BR><BR>x=0:pi/400:2*pi;<BR>x=x';<BR>y1=sin(pi*x);y2=cos(pi*x);plot(x,y1,x,y2);hold on<BR>r0=abs(y2-sin(pi*x))<=0.02;<BR>yy=r0.*y1;xx=r0.*x;plot(xx(r0~=0),yy(r0~=0),'r.')<BR><BR>直线与曲面相交<BR><BR>x=-8:0.3:8;y=x;=meshgrid(x,y);<BR>Z=X.^2+Y.^2;<BR>mesh(X,Y,Z);hold on<BR>x=[-10 10];y=[-10 3];z=;line(x,y,z);<BR>r0=(abs(Y-y(1)-(y(2)-y(1))/(x(2)-x(1))*(X-x(1)))<=0.45)&...<BR>(abs(Z-z(1)-(z(2)-z(1))/(x(2)-x(1))*(X-x(1)))<0.45)&...<BR>(abs(Y-y(1)-(y(2)-y(1))/(z(2)-z(1))*(Z-z(1)))<=0.45);<BR>zz=r0.*Z;yy=r0.*Y;xx=r0.*X;<BR>plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'r*')<BR><BR>平面与曲面相交<BR><BR>x=-8:0.1:8;<BR>y=x;<BR>=meshgrid(x,y);<BR>Z1=2*ones(size(X));<BR>Z2=X.^2-Y.^2;<BR>mesh(X,Y,Z1);<BR>hold on<BR>mesh(X,Y,Z2);<BR>r0=(abs(Z1-Z2)<=.65);<BR>zz=r0.*Z1;yy=r0.*Y;xx=r0.*X;<BR>plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'k*')<BR>clc<BR>disp('观察曲面后,按任意键画交线');<BR>pause<BR>clf<BR>plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'k*');<BR><BR>%曲面与多个截平面相交<BR>y=-10:0.5:10;<BR>z=y;<BR>=meshgrid(z,y);<BR>X=Z;<BR>X1=0*ones(size(Z));<BR>X2=3*ones(size(Z));<BR>X3=-3*ones(size(Z));<BR>Z4=(X.^2-Y.^2)/10;<BR>mesh(X1,Y,Z);hold on<BR>mesh(X2,Y,Z)<BR>mesh(X3,Y,Z);<BR>mesh(X,Y,Z4);<BR>r1=(abs(X1-X)<0.05);<BR>r2=(abs(X2-X)<0.05);<BR>r3=(abs(X3-X)<0.05);<BR>zz1=r1.*Z4;yy1=r1.*Y;xx1=r1.*X;<BR>zz2=r2.*Z4;yy2=r1.*Y;xx2=r1.*X;<BR>zz3=r3.*Z4;yy3=r1.*Y;xx3=r1.*X;<BR>plot3(xx1(r1~=0),yy1(r1~=0),zz1(r1~=0),'k*');<BR>plot3(xx2(r2~=0),yy2(r2~=0),zz2(r2~=0),'k*');<BR>plot3(xx3(r3~=0),yy3(r3~=0),zz3(r3~=0),'k*');<BR>colormap(hsv)<BR>clc;<BR>disp('观察曲面后,按任意键画交线');<BR>hold off<BR><BR>平面与曲面相交<BR><BR>y=-8:0.4:8;<BR>z=y;<BR>=meshgrid(z,y);<BR>X=Z;<BR>X1=zeros(size(Z));<BR>Z2=zeros(size(Z));<BR>Z3=(X.^2-Y.^2)/10;<BR>mesh(X1,Y,Z);<BR>hold on<BR>mesh(X,Y,Z2);<BR>mesh(X,Y,Z3);<BR>r1=(abs(X1-X)<0.05);<BR>r2=(abs(Z3-Z2)<0.05);<BR>r3=(abs(X1-X)<0.05)&(abs(Z-Z2)<=0.05);<BR>zz1=r1.*Z3;yy1=r1.*Y;xx1=r1.*X;<BR>zz2=r2.*Z3;yy2=r2.*Y;xx2=r2.*X;<BR>zz3=r3.*Z;yy1=r3.*Y;xx1=r3.*X1;<BR><BR>plot3(xx1(r1~=0),yy1(r1~=0),zz1(r1~=0),'k*');<BR>plot3(xx2(r2~=0),yy2(r2~=0),zz2(r2~=0),'k*');<BR>plot3(xx3(r3~=0),yy3(r3~=0),zz3(r3~=0),'k*');<BR><BR>colormap(hsv); 谢谢了.
能给出我问的问题的解法吗?比如说,如何画出柱面x^2+y^2=1的图形。
[ 本帖最后由 ChaChing 于 2009-2-27 17:37 编辑 ] <P>不错的方法</P>
3x
这个问题学习了,很受益 参考:http://forum.vibunion.com/forum/viewthread.php?tid=72730&extra=&page=1clear
clc
=sphere;
=cylinder;
X1=.5*X1+.5;
Y1=.5*Y1;
surf(X1,Y1,Z1*4-2)
hold on
surf(X,Y,Z)
x1=0:0.01:1;
y1=sqrt(x1-x1.^2);
y2=-y1;
z1=sqrt(1-x1);
z2=-z1;
plot3(x1,y1,z1,'r','LineWidth',5)
plot3(x1,y1,z2,'r','LineWidth',5)
plot3(x1,y2,z1,'r','LineWidth',5)
plot3(x1,y2,z2,'r','LineWidth',5)
页:
[1]