|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
本帖最后由 Rainyboy 于 2011-3-21 11:46 编辑
写在前面的PS:试用了一下邀请功能……不知道有没有打扰到各位……如有冒犯,多包涵……
有一个简谐信号,假设为:y(t)=1*sin(2*PI*t),显然其频率为1Hz,假如在一周期内以11个点来离散这个信号,我想与各位探讨如下两种方法的可行性和优劣。
方法一(后文图中的红色时序信号):以采样频率fs=10Hz,即采样间隔dt = 1/fs = 0.1s,在采样时间1s内,对y(t)进行采样:
Y_1(i) = y(i*dt) ; i = 0,1,...,10
方法二(后文图中的蓝色时序信号):以频率分辨率1Hz,构造如下频谱:
F_Real(i) = [0,0,0,0,0,0];
F_Image(i) = [ ,-1,0,0,0,0];
将上述频谱作IFFT变换,同样可以得到以采样频率fs=10Hz,即采样间隔dt = 1/fs = 0.1s,在采样时间1s内的数据:
Y_2 = IFFT(F_Real,F_Image);
按照上述假设算了一下,下面是用两种方法产生的序列的时序结果(红色的是方法一,蓝色的是方法二):
分别对各自进行FFT分析,得(颜色约定同上):
===========================================================
可以看到,第二种方法似乎破坏了时序信号在采样时间内的周期性(Y_2(1)不等于Y_2(0)),但是频谱却很干净……
第一种方法在采样时间内的周期性没问题,但是有不希望出现的频率成分……
当然,当取点数(采样频率)不断增大的时候,两种方法得到的结果趋于一致,但是我这里只是想探讨在采样频率并非远大于原信号时的构造方法。
我是这样想提出这个问题的:如果在瞬态动力学分析中,想给系统一个单频的激振力,如果采用方法一,似乎激振力的频率并不是单一的;而采用方法二,时域激励信号又包含冲击(每个周期的开始和结束)。
所以比较纠结,故来此征询:如果只有11个采样点,想要模拟一个1Hz的正弦信号,怎样更好呢?
|
|