马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
哈密尔顿系统的一个重要问题就是稳定性问题,这类问题在几何上的特点是:他的解在相空间上是保测的,其特征方程的根是纯虚数,所以不能用Poincare,Liapunov渐近稳定性理论,而必须用KAM定理来加以研究,这是一种关于整体稳定的论断,是牛顿力学发展史上最重大的突破. 辛几何在数值分析中的应用是冯康于1984年在北京召开的国际微分几何和微分方程会议上首先提出的.它是基于分析力学中的基本定理:系统的解是一个单参数的保测变换(辛变换),从而开创了哈密尔顿力学计算的新方法.
KAM定理
1960年前后,前苏联数学家柯尔莫果洛夫(Kolmogorov,A.N.)、阿诺德(Arnold,V.I.)和莫塞尔(Moser,J.)提出并证明了以他们的姓氏的字头命名的KAM定理。这个定理的基本思想是1954年柯尔莫果洛夫在阿姆斯特丹举行的国际数学会议上宣读的《在具有小改变量的哈密顿函数中条件周期运动的保持性》短文中提出的。后来他的学生阿诺德做出了严格的证明,莫塞尔又推广了这些结果。
假定系统的哈密顿函数分为两部分
H = H0(Ji) + εV(Ji,θi)
其中H0部分是可积的,V是使H变得不可积的扰动,只要ε很小,这就是一个弱不可积系统。KAM定理断言,在扰动较小,V足够光滑,离开共振条件一定距离三个条件共同成立下,对于系统的大多数初始条件,弱不可积系统的运动图象与可积系统基本相同。可积系统的运动限制在由N个运动不变量决定的N维环面上,而弱不可积系统的绝大多数轨道仍然限制在稍有变形的N维环面上,这些环面并不消失,只有轻微的变形,称为不变环面。不过,只要有非零的扰动,总会有一些轨道逃离不变环面,出现不稳定、随机性的特征。 |