|
楼主 |
发表于 2012-12-1 11:26
|
显示全部楼层
yuling的程序:
function [Smean,Sdeltmean,Scor,tau,tw]=C_CMethod(data,max_d)
% 本函数用于求延迟时间tau和时间窗口tw
% data:输入时间序列
% max_d:最大时间延迟
% Smean,Sdeltmean,Scor为返回值
% tau:计算得到的延迟时间
% tw:时间窗口
N=length(data); %时间序列的长度
Smean=zeros(1,max_d); %初始化矩阵
Scmean=zeros(1,max_d);
Scor=zeros(1,max_d);
sigma=std(data); %计算序列的标准差
% 计算Smean,Sdeltmean,Scor
for t=1:max_d
S=zeros(4,4);
Sdelt=zeros(1,4);
for m=2:5
for j=1:4
r=sigma*j/2;
Xdt=disjoint(data,t); % 将时间序列data分解成t个不相交的时间序列
s=0;
for tau=1:t
N_t=floor(N/t); % 分成的子序列长度
Y=Xdt(:,tau); % 每个子序列
%计算C(1,N/t,r,t),相当于调用Cs1(tau)=correlation_integral1(Y,r)
Cs1(tau)=0;
for ii=1:N_t-1
for jj=ii+1:N_t
d1=abs(Y(ii)-Y(jj)); % 计算状态空间中每两点之间的距离,取无穷范数
if r>d1
Cs1(tau)=Cs1(tau)+1;
end
end
end
Cs1(tau)=2*Cs1(tau)/(N_t*(N_t-1));
Z=reconstitution(Y,m,1); % 相空间重构
M=N_t-(m-1);
Cs(tau)=correlation_integral(Z,M,r); % 计算C(m,N/t,r,t)
s=s+(Cs(tau)-Cs1(tau)^m); % 对t个不相关的时间序列求和
end
S(m-1,j)=s/tau;
end
Sdelt(m-1)=max(S(m-1,:))-min(S(m-1,:)); % 差量计算
end
Smean(t)=mean(mean(S)); % 计算平均值
Sdeltmean(t)=mean(Sdelt); % 计算平均值
Scor(t)=abs(Smean(t))+Sdeltmean(t);
end
% 寻找时间延迟tau:即Sdeltmean第一个极小值点对应的t
for i=2:length(Sdeltmean)-1
if Sdeltmean(i)<Sdeltmean(i-1)&Sdeltmean(i)<Sdeltmean(i+1)
tau=i;
break;
end
end
% 寻找时间窗口tw:即Scor最小值对应的t
for i=1:length(Scor)
if Scor(i)==min(Scor)
tw=i;
break;
end
end |
|