马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
采用matlab 里面自带的ode 45 方程求解,包含各个齿轮的平移和各自的转角,模型公式来自Kahraman的 ‘load sharing characteristics of planetary transmissions’ 文章。太阳轮输入,行星架输出,内齿轮固定,
v = zeros(24,1);
vdot = zeros(size(v));
rs = 0.105*cos(20*pi/180); % base sun gear circle radii, m
rp = 0.195*cos(20*pi/180);% base planet gear circle radii, m
rr = 0.495*cos(20*pi/180);% base ring gear circle radii, m
rc = (0.105+0.195); % carrier arm circle radii, m
is = 24; % mass moment of inertia of sun gear, kg m^2
ip = 2.04; % mass moment of inertia of planet gear, kg m^2
ir = 75.4; % mass moment of inertia of rin gear, kg m^2
ic = 60.3; %mass moment of inertia of carrier arm, kg m^2
ms =181.6; % sun gear mass
mp =104; % planet gear mass
mr =480; % ring gear mass
mc =756.9; % carrier arm mass
function vdot = geardot(t,v)
% declare all global variables
global rs rp rc rr is ip ic ir ms mp mr ksp krp angl
torque_s = 1; % input torque
torque_c = 0.0075*v(24)^2; % output load characteristic
kspi=1e5;
krpi=2.5e5;
kmsp=(kspi/(rs*rs));
kmrp=(krpi/(rp*rp)); %linear stiffness
csp=2*0.03*sqrt((kmsp*rs^2*rp^2*is*ip)/(rs^2*is+rp^2*ip)); % sun planet gear mesh damping
crp=2*0.03*sqrt((kmrp*rr^2*rp^2*ir*ip)/(rr^2*ir+rp^2*ip)); % ring planet gear mesh damping
psi=v(23)/rc;
psi_s1=psi-20*pi/180;
psi_r1=psi+20*pi/180;
%relative gear mesh displacement of sun-planet pair
delta_sp=(v(1)-v(7))*cos(psi_s1)-(v(3)-v(9))*sin(psi_s1)-v(5)-v(11);
delta_vsp=0;
%relative gear mesh displacement of planet-ring pair
delta_rp=(0-v(7))*cos(psi_r1)-(0-v(9))*sin(psi_r1)-0+v(11);
delta_vrp=0;
%carrier arm assemble error
ec=0;
et=0;
%planet gear pin displacement
pin_y=v(19)-v(7)-v(23)*cos(psi)+ec*sin(psi)+et*cos(psi);
pin_vy=v(20)-v(8)-v(24)*cos(psi);
pin_x=v(21)-v(9)+v(23)*sin(psi)+ec*cos(psi)+et*sin(psi);
pin_vx=v(22)-v(10)+v(24)*sin(psi);
%planet gear pin stiffness
cyy=0;
cxx=cyy;
kyy=1e8;
kxx=kyy;
%ring gear reaction torque_r
%krt=1e12;
%torque_r = -v(17)*krt;
%sun gear motion equations
vdot(1,1) = v(2);
vdot(2,1) = (-csp*delta_vsp*cos(psi_s1)-kmsp*delta_sp*cos(psi_s1))/ms;
vdot(3,1) = v(4);
vdot(4,1) = (csp*delta_vsp*sin(psi_s1)+kmsp*delta_sp*sin(psi_s1))/ms;
vdot(5,1) = v(6);
vdot(6,1) = ((torque_s/rs+csp*delta_vsp+kmsp*delta_sp)*rs^2)/is;
%planet gear motion equations
vdot(7,1) = v(8);
vdot(8,1) = ((csp*delta_vsp*cos(psi_s1)+kmsp*delta_sp*cos(psi_s1))+(crp*delta_vrp*cos(psi_r1)+kmrp*delta_rp*cos(psi_r1))+cyy*pin_vy+kyy*pin_y)/mp;
vdot(9,1) = v(10);
vdot(10,1)= (-(csp*delta_vsp*sin(psi_s1)+kmsp*delta_sp*cos(psi_s1))-(crp*delta_vrp*sin(psi_r1)+kmrp*delta_rp*cos(psi_r1))+cxx*pin_vx+kxx*pin_x)/mp;
vdot(11,1)= v(11);
vdot(12,1)= (((csp*delta_vsp+kmsp*delta_sp)-(-crp*delta_vrp+kmrp*delta_rp))*rp^2)/ip;
%ring gear motion equations
vdot(13,1)= 0;
vdot(14,1)= 0;
vdot(15,1)= 0;
vdot(16,1)= 0;
vdot(17,1)= 0;
vdot(18,1)= 0;
%carrier arm motion equations
vdot(19,1)= v(20);
vdot(20,1)= -cyy*pin_vy-kyy*pin_y;
vdot(21,1)= v(22);
vdot(22,1)= -cxx*pin_vx-kxx*pin_x;
vdot(23,1)= v(24);
vdot(24,1)= ((-torque_c/rc-cxx*pin_vx*sin(psi)+cyy*pin_vy*cos(psi)-kxx*pin_x*sin(psi)+kyy*pin_y*cos(psi))*rc^2)/ic;
当查看太阳轮的扭转速度v(5)或者是行星架的扭转速度v(24),发现并没有稳定在某一个速度,跟实际不符合。
请大家帮忙查看一下.
请问大家有做行星齿轮振动分析的么?求交流!
|