|
fs=32;N=32;n=0:N-1;t=n/fs;
x=sin(2*pi*t);
figure
hua_fft(x,fs,1);xlim([0 16]);ylim([0 1]);set(gca,'XTick',[0 1 2 4 6 8 10 12 14 16]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function hua_fft(y,fs,style,varargin)
% 1、理论上傅里叶变换结果的零频分量就是平均值。
% 2、实践上做傅里叶变换时,平均值一般不会是分析的重点。
% 当平均值分量幅度很大而想重点分析的频段幅值较小时,
% 为了提高对有用信号分析的准确度,就需要预先减去信号平均值。
%当style=1,画幅值谱;当style=2,画功率谱;
%当style=1时,还可以多输入2个可选参数
%可选输入参数是用来控制需要查看的频率段的
%第一个是需要查看的频率段起点
%第二个是需要查看的频率段的终点
%其他style不具备可选输入参数,如果输入发生位置错误
nfft= 2^nextpow2(length(y));
%nextpow2意思是找出大于y的个数的最小的2的指数值,前面加2指数次说明对应的整数是多少
y=y-mean(y);%去除直流分量
y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布
y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。
y_f=fs*(0:nfft/2-1)/nfft;%变换后对应的频率的序列
if style==1
if nargin==3
plot(y_f,2*abs(y_ft(1:nfft/2))/length(y),'k');%matlab的帮助里画FFT的方法
xlabel('f/Hz');ylabel('幅值');
%ylabel('幅值');xlabel('频率');title('信号幅值谱');
%plot(y_f,abs(y_ft(1:nfft/2)));%论坛上画FFT的方法
else
f1=varargin{1};
fn=varargin{2};
ni=round(f1 * nfft/fs+1);
na=round(fn * nfft/fs+1);
plot(y_f(ni:na),abs(y_ft(ni:na)*2/nfft),'k');
xlabel('f/Hz');ylabel('a/m\bullets^{-2}');
end
elseif style==2
plot(y_f,y_p(1:nfft/2),'k');
%ylabel('功率谱密度');xlabel('频率');title('信号功率谱');
else
subplot(211);plot(y_f,2*abs(y_ft(1:nfft/2))/length(y),'k');
ylabel('幅值');xlabel('频率');title('信号幅值谱');
subplot(212);plot(y_f,y_p(1:nfft/2),'k');
ylabel('功率谱密度');xlabel('频率');title('信号功率谱');
end
end |
-
信号
-
幅值谱
|