|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
本帖最后由 minoz 于 2016-3-16 10:16 编辑
100年前,当爱因斯坦预测引力波的存在的时候,他不曾想过,有朝一日,人类能够真正观测到应力波:这个效应是如此的微弱,无法察觉。
今天,2016年2月11日,北京时间23:30分,加州理工学院、麻省理工学院、LIGO科学联盟以及美国国家科学基金会,向全世界宣布: 我们真的探测到引力波!相关论文,以Observation of Gravitaiton Waves from a Binary Black Hole Merger为题,在Physical Review Letters上发表。论文作者包括清华大学LSC引力波研究团队。
知社学术圈特邀请论文作者之一、LIGO科学联盟核心成员、加州理工学院陈雁北教授,和中国引力波专家、湖北第二师范学院范锡龙博士,撰文介绍引力波探测漫长曲折而又激动人心的经历,和一些鲜为人知的花絮, 从300年前的引力,100年前相对论,一直讲到今天的引力波。文末有知社学术圈对陈雁北、范锡龙教授独家采访。本文来自微信公众号:知社学术圈(zhishexueshuquan),作者:陈雁北、范锡龙
1915年,爱因斯坦发表广义相对论论文,革新了自牛顿以来的引力观和时空观,创造性地论证了引力的本质是时空几何在物质影响下的弯曲。1916年,爱因斯坦在广义相对论的框架内,又发表论文论证了引力的作用以波动的形式传播。
因为引力波的效果极其微弱,100年前的爱因斯坦认为引力波在任何能想象的情况下都可以忽略。50年以前,实验物理学家Joe Weber勇敢的开拓了引力波探测的先河。40年前,天文学家Hulse和Taylor发现了脉冲双星,间接证实了引力波的存在。25年前,物理学家Drever, Thorne和Weiss在美国国家科学基金的资助下开始建造激光干涉引力波天文台 (Laser Interferometer Gravitational-wave Observatory,LIGO)。 今天,美国的LIGO和欧洲的VIRGO引力波探测器联合发布消息,宣布已经探测到距离地球约13亿光年的两个大约30太阳质量的黑洞碰撞所发出的引力波。
在这个让物理学家50年来望眼欲穿的、持续时间不到一秒钟的事件(GW150914)中,4对在真空中相距4公里的40千克的玻璃镜子的距离,以原子核尺寸千分之一大小的振幅振动了十几次。这样微乎其微的振动,被打在这些镜子上的100千瓦的激光读出,让人类第一次“近距离的接触”了黑洞。黑洞不再是科幻作品中的神奇物体,不再躲在高温磁化的等离子体后面,也不再稳稳的坐在星系中央。这次,我们实实在在的观察到了黑洞附近时间和空间的高度扭曲和脉动。引力波探测的成功,为人类观察宇宙提供了一个崭新的窗口。
引力
引力是无处不在的 。 它主导了天,让宇宙、星系、恒星、行星有序地形成和演化;它主导了地,让我们生活的地球分成了各个圈层,让苹果落地,让人类羡慕鸟类飞翔,让日出日落,山川秀丽。可是,引力虽然无处不在,它却低调而又卓尔不群,以至于我们经常会忽略它: 我们生活中的五颜六色、酸甜苦辣,都是由电磁相互作用所产生的。而到目前为止,在微观上,引力还是和其他基本相互作用不能融合!
引力是人类最早定量认识的相互作用,让人类从无知走向科学。在17世纪,伽里略的斜塔实验就通过运动学证明了引力对众生平等,也就是等效原理——不同材质的物体下落加速度一致。1687年,牛顿创建了万有引力定律,并且发明微积分的数学方法对行星的运动进行精确的描述。后人用牛顿的理论发现了海王星和冥王星。虽然水星近日点的进动一直和牛顿预言闹一点非常微小的矛盾,但是貌似引力的终极理论就此完成。
在牛顿发现引力之后的几百年,物理学的进展更多的是在对电和磁的研究,1865年麦克斯韦最终建立了电场和磁场的大一统理论。到了1905年,爱因斯坦提出了狭义相对论,极具洞察力地论证了电磁场的统一性暗含了时间和空间的统一性:物理理论必须把时间和空间放在一起考虑,而时间和空间本身,失去了绝对意义。一个新的概念,“时空”,就这么诞生了。
广义相对论
尽管牛顿的万有引力定律有着几乎完美的实验验证,但是观念上是把时间和空间分开考虑的,并且牛顿引力是瞬时传播的。因此,牛顿引力和狭义相对论理论在概念上是矛盾的。提出了狭义相对论之后,爱因斯坦进一步研究引力和“时空几何”的关系,重新思考伽里略所观察到的物体下落加速度一致这个现象,意识到引力是一个非常特殊的相互作用。如果我们进入一个自由下落的参照系,那么引力会消失!这就是为什么在地球附近的宇航员会感觉到失重:不是因为他们离地球太远,而是因为他们在自由下落!
如果我们进入自由下落的参照系,引力好像没有了,是不是意味着引力只是参照系变换的产物,而不是真实的物理存在呢?不是的,因为宏观上不同位置上自由下落的参照系是不同的!如果我们考虑一个足够大的空间站,就会发现空间站不同位置上的物体会有相对加速的现象,这就是所谓的潮汐加速度。而这个加速度,是对所有物体都适用的。爱因斯坦把这个归结于时空几何的弯曲。
file:///http://images.huxiu.com/article/content/201602/12/1454176674.jpg?imagemogr2/strip/interlace/1/format/jpg
广义相对论中的时空几何,就是会让本来速度彼此平行的自由下落物体彼此接近或者远离。像牛顿引力中的苹果落地一样,广义相对论中的弯曲几何也可以用苹果解释。在苹果的表面,如果画一些起初平行的曲线,并且以同样的初速度从这些平行曲线出发。那么根据这些平行曲线的位置和走向不同,它们有的会彼此靠近(正曲率),有的会彼此远离(负曲率)。
file:///http://images.huxiu.com/article/content/201602/12/1454447680.jpg?imagemogr2/strip/interlace/1/format/jpg
爱因斯坦联系时空几何和物质分布的方程,可以写成一个非常简洁的张量形式:
file:///http://images.huxiu.com/article/content/201602/12/1456401502.jpg?imagemogr2/strip/interlace/1/format/jpg
这就是非常优美的爱因斯坦方程。在解释为什么广义相对论可以解决引力瞬时传播之前,咱们先看一下其艰深而又奇妙的一面。
爱因斯坦方程的求解
广义相对论的方程形式美的令人陶醉,但是数学结构比苹果表面的几何复杂很多。 在相当一段时间里,数学家和物理学家只能远观而不能与之亲密接触,只得到了爱因斯坦方程在少数情况下的解,而并不理解这些方程的意义。直到20世纪70年代初,数学物理学家才证明了爱因斯坦方程在原则上可以系统的用初始条件加时间演化的方法求解。在1979年,丘成桐先生和他的学生Richard Schoen用几何分析的方法证明了《正质量定理》,给广义相对论中质量的概念奠定了数学的基础。真正女神的魅力是持久的,爱因斯坦方程解的全局性质、以及物理学家所用的数值解法的收敛性问题,至今也还是数学研究的前沿问题。
黑洞
自从爱因斯坦建立他的引力方程以来,科学家陆续发现了一些解析解,球对称下的Schwarzschild解和轴对称下的Kerr解。这些解所对应的时空中没有任何质量,貌似是纯时空几何的弯曲。
后来,在Oppenheimer和Wheeler 等人的研究下,人们逐渐意识到,这是大质量星体烧尽核燃料以后,通过“塌缩”所达到的一个状态。Wheeler把这些时空结构命名为“黑洞”。
在数学上,黑洞的时空有很多奇妙的结构。比如,黑洞有一个叫做“视界”的结构。在“时空图”上,视界把时空分成两部分,一部分是可以和远处联系的,而另一部分,是无法和远处联系的。当星体塌缩成黑洞时,坐在星体表面的观测者会穿过黑洞的视界,而站在外面的观测者,则不会看到星体表面的观测者穿过视界,只是看到他的运动越来越慢,像是被“冻结”在视界表面。
再比如,在视界外面不远,有一个“光球”。光在引力的作用下,可以在光球上绕着黑洞运转,既不逃逸到无穷远,也不落入黑洞。
file:///http://images.huxiu.com/article/content/201602/12/1457201395.jpg?imagemogr2/strip/interlace/1/format/jpg
在70年代,科学家又从数学上推断出黑洞的一些其他性质。一方面,数学家证明了一系列的“黑洞唯一性”定理,显示具有“视界”并且没有物质的时空只能是有限的几个黑洞的时空结构。另一方面,《黑洞微绕论》的创立让物理学家从直观上论证了在星体塌缩成黑洞的过程中,黑洞的几何结构产生的过程。当霍金等物理学家把量子力学用在黑洞上时,惊奇地发现,黑洞也会通过所谓的“霍金辐射”蒸发。
天文学中的黑洞
黑洞在数学上奇妙的性质,引起了人们的无限遐想,也成为科幻作品的重要题材。可是,它是不是真实的物理存在呢?科学上要证明一个物体的存在,至少要观测到它对别的物体的效应。
闭门造黑洞是不行的,要抬头看天!
天文观测中,科学家发现了一些疑似黑洞的物体。由于对爱因斯坦理论的信任和青睐,天文学家们一致认为这些物体就是黑洞。
第一类物体的质量是太阳的几倍到几十倍,它们存在于X-射线双星里,并且尺寸小于几十公里。按照广义相对论的计算,这样的物体必须是黑洞。这些物体发出的X-射线是由黑洞的伴星放出的气体在往黑洞下落的时候相互挤压、摩擦、加热发出的。
第二类物体是存在于星系中心的超大质量黑洞,具有可以超过几十、几百万倍的太阳质量,并且也有很小的尺寸,让大家推测这些也必然是黑洞。比如,在银河系的中心,就有一个四百万太阳质量的黑洞。在另外一些星系中,有气体不断掉入黑洞,在黑洞附近形成一个绕着黑洞旋转的“吸积盘”,并且在黑洞的旋转轴附近发出“喷流”。这样的一个系统叫做活动星系核,它会发射的强烈电磁辐射,是天文观测的一个重要目标。
还有一类物体是中等质量的黑洞。它们可能产生于小质量黑洞并合,或者小黑洞吃掉很多恒星,或者是通过宇宙早期的大质量恒星塌缩而形成。在某些低光度的活动星系核,超亮X-射线源和球状星团中有一些它们的踪迹。
这些天文学中的观测现象从一个侧面证明了黑洞的存在,但是目前还没法很精确的测定黑洞附近的几何结构。这些黑洞也都是随时间不变的稳定黑洞,它们周围的时空结构,在我们观测的这段时间内是不变的。
引力波
爱因斯坦在1916年就预言了引力波的存在:他发现自己的方程有一组解,和电磁波的性质类似,以光速传播。但是他在文章里又说(下图中最后一句),因为这个引力波辐射的能量很少,在所有能想得到的情况下,引力波的辐射都可以被忽略。
file:///http://images.huxiu.com/article/content/201602/12/1457541668.jpg?imagemogr2/strip/interlace/1/format/jpgAlbert Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 1916.
在很长一段时间内,物理学家搞不清这个解的物理意义,更没想到这个波可以有什么观测上的价值。在1960年左右,引力波的物理意义开始明朗,物理学家认为,引力波可以被看成是引力相互作用的传播,并且可以被看成是携带着引力能。这就说明,引力相互作用是以光速传播的。
想了解引力波所对应的时空几何,需要把刚才光滑的苹果变成粗糙的橘子:橘子表面有两种弯曲的几何结构。大尺度的时空几何(橘子的半径)代表了宇宙空间中的引力,而小尺度的几何(粗糙的点点)代表了引力波。
file:///http://images.huxiu.com/article/content/201602/12/1458212337.jpg?imagemogr2/strip/interlace/1/format/jpg
在一个自由下落的物体参照系中,引力波可以看成是一个“潮汐引力场”。也就是说,距离这个物体越远的物体,它感受到的引力场越大。在自由物体之间,潮汐引力场会引起他们相对位移按比例的变化(也就是“应变”)。引力波的振幅h,通常就用这个应变来代表。
file:///http://images.huxiu.com/article/content/201602/12/1459182787.jpg?imagemogr2/strip/interlace/1/format/jpg
如果不是自由下落的分开的物体,而是一个整个的弹性体,那么引力场的效果还要看这个弹性体本身对外力的响应。
引力波探测的历史
爱因斯坦说了,引力波很微弱,那么到底有多么微弱呢?我们下面举一个例子说明。就算是人类历史上最大的氢弹爆炸,我们可以粗略的估算一下离爆炸处一米之内的引力波振幅h,也就是它引起的自由下落物体之间的应变。这个应变,只有10^-27左右的量级。
file:///http://images.huxiu.com/article/content/201602/12/1459426803.jpg?imagemogr2/strip/interlace/1/format/jpg
虽然引力波这么微弱,但还是没有吓倒勇敢的实验物理学家Joe Weber。他深信,虽然地球上产生的引力波很微弱,宇宙空间中也许有天文现象可以导致足够强的引力波。20世纪60年代末期,Weber开始用共振法测量引力波。具体就是用一个很大的金属物体,利用引力波在物体的谐振频率上引起共振的特点,希望从这个物体的振动中提取引力波的信号。
Weber发表了一些实验结果,认为已经发现了引力波。但是很可惜,他的实验没有人可以重复,而理论上也很难论证究竟是什么样的过程发出了这么强烈的引力波信号。但是,Weber的工作激励了一批科学家投身引力波事业。从20世纪70年代起,一批理论和实验物理学家加入了引力波理论研究和实验探测的行列。
MIT的实验物理学家Weiss注意到,引力波对物体之间距离的变化,和物体之间本来的距离成正比。这样的话,如果把物体之间的距离拉的很远,并且把它们做成镜子,然后用激光测距的方法测量镜子之间的距离,就可以成倍的提高对引力波测量的精度。
file:///http://images.huxiu.com/article/content/201602/12/1500086615.jpg?imagemogr2/strip/interlace/1/format/jpg
在这个同时,英国Glasgow大学的Drever和休斯飞机公司的Forward也开始了激光干涉的引力波测量实验。
1975年,就在引力波实验逐渐发展的时候, 天文学家Hulse和Taylor发现了一对脉冲双星。1982年,Taylor和 Weisberg通过其轨道频率的演化,推断出了这个双星正在丢失能量,而这个能量丢失率和引力波导致的是一致。这给引力波的存在提供了一个强有力的间接证据:引力波终于从纸上走了出来!Hulse和Taylor在1993年因此获得诺贝尔奖,脉冲双星也成为研究广义相对论和中子星的一个重要系统。
Kip Thorne
要提LIGO的历史,得提一下《星际穿越》中的“非著名电影演员” Kip Thorne。他是命名黑洞的物理学家John Wheeler的学生,算起来也是Richard Feynman的师弟 。Thorne早年在Princeton做研究生的时候,和Wheeler一起研究了引力塌缩的过程,在黑洞作为星体演化末态的学说上做出了重要的贡献。从此, Thorne跟黑洞结下了不解之缘。不要惊讶,“引力圣经MTW”中的T和W就是Kip Thorne和John Wheeler。自从Weber“发现”引力波以后, Thorne就致力于黑洞和引力波这个新型辐射的研究。
file:///http://images.huxiu.com/article/content/201602/12/1500340789.jpg?imagemogr2/strip/interlace/1/format/jpg
2009年, Thorne从Caltech退休。他通过旧情人Lynda Obst认识了斯皮尔伯格和诺兰,并且参与了以黑洞为主题的电影《星际穿越》的编剧和摄制,从此进军好莱坞。每次有人托他办事,他如果想推脱,就会说现在开始了新的电影生涯,忙不过来。不过,这次华盛顿DC的记者会,他也还是重新出山了,风采绝对不亚于其在好莱坞的光芒!
在20世纪70年代末, Thorne说服了Caltech支持引力波研究,Drever在Caltech建立了引力波探测实验室。1979年美国国家科学基金会开始资助Drever和Thorne在Caltech,以及Weiss在MIT的激光干涉引力波测量预研究。
LIGO的引力波源和理论研究
最初,学术界普遍对探测引力波的可能性持怀疑态度。在早期,人们对引力波源的认识非常不足,一度认为超新星爆发是引力波探测的主要波源。后来,大家通过对超新星爆发的详细计算,推断出其所发出的引力波远没有以前想象的那么大。
90年代初,Thorne和他的合作者认识到,双黑洞和双中子星的碰撞所发出的引力波可以有足够的振幅被探测到。他开始系统的推进和开展引力波源的天体物理、相对论动力学研究和数据分析方法的研究。虽然多数人认为双中子星是最靠谱的波源,Thorne一直认为双黑洞因为质量比较大, LIGO可以看到比较远的距离,所以相应的体积中就会有更多的可能性。因此,虽然双黑洞的形成过程不太明确,但是还是有可能是最先被探测到的。想要研究双黑洞的引力波,必须先计算出广义相对论对双黑洞碰撞的预言。物理学家通过“数值相对论”的方法,用大型计算机对爱因斯坦方程进行求解。
LIGO计划的实施
在90年代初,由Drever、Thorne和Weiss领导的LIGO项目得到了美国National Science Foundation的资助,在美国的华盛顿州和路易斯安那州分别建造一个臂长四公里的干涉仪。在最早的LIGO计划书中,双黑洞和双中子星的碰撞过程是主要的目标。他们就提到了一个三步计划:第一步的initial LIGO在设计灵敏度下可以看到5亿光年以外的双黑洞碰撞,第二步的 Advacned LIGO在设计灵敏度下可以看到70亿光年以外的双黑洞碰撞。 这多出的14倍的距离,相当于多覆盖了宇宙中将近三千倍的体积。今天的Advanced LIGO,尚未达到设计灵敏度,就已经看到了14亿光年以外的双黑洞碰撞。
那么,到底多少亿光年的覆盖距离才够呢?天文观测具有一定的随机性,但是随机过程也是可以从统计上进行把握的。为了不重蹈Joe Weber的覆辙,LIGO科学家们事先要推算出一定体积内黑洞、中子星碰撞的发生率。推测发生率,要根据天文学家对宇宙中星系的分布、星系中双星的形成、演化等一系列信息进行综合考虑。在没有引力波探测作为依据的情况下,对这些发生率推断是有很大误差的。根据当时最好的估计,initial LIGO应该只有很少的希望可以看到双黑洞的碰撞,而几乎没有希望看到双中子星的碰撞。Advanced LIGO很可能可以很容易的看到双黑洞的碰撞,而应该可以保证至少探测到几个双中子星的碰撞。从这个角度来看,今天的成功,虽然是幸运,也并不是意料之外的事情。并且,既然我们已经在这个灵敏度下探测到了一个事件,这就意味着如果我们按照这个灵敏度继续探测,势必会有更多的事件被探测到。
file:///C:\Users\Administrator\AppData\Roaming\Tencent\QQ\Temp\TempPic\HV])%)%ZR{1IF5]HW~RVH`T.tmp
LIGO的灵敏度和运行
LIGO探测器在1999年最初建成,然后花了5年时间,在2005年到达了设计灵敏度,可以测量在60Hz以上,10kHz以下的引力波,位移变灵敏度达到10^-21。这是什么概念呢?这样的应变,如果是用到从地球到太阳之间的距离,导致的距离变化不超过头发丝的十万分之一。换算到千米量级的臂长,它对检验质量位移的灵敏度可以达到10^-18米,是原子核大小的1/1000!
LIGO为什么可以达到比原子核大小还要小的灵敏度呢?
从光学定位的角度考虑,这是因为LIGO用了很强的激光,并且使用了光学谐振放大的方法。每一个光子,可以对位置进行一个光波长左右的测量。而光子在谐振腔中反复传播100次,就可以测量光波长百分之一的距离变化,也就是10^-8米。如果用多个光子,灵敏度会按光子个数的平方根增加。于是,10^20个光子,就可以达到10^-18米的灵敏度了。
而从原子尺度考虑,则是因为LIGO的光束打在了很多个原子上,这个平均的效应让我们可以测量到比单个原子尺寸更小的位移。在2003到2009年这段时间,LIGO-1采集了一些数据,并且作出了分析。但是在这个数据里面并没有发现引力波。从2009到2015年,LIGO进行了历时6年的升级,从LIGO-1升级到LIGO-2,也就是Advanced LIGO。
file:///http://images.huxiu.com/article/content/201602/12/1501541285.jpg?imagemogr2/strip/interlace/1/format/jpg世界各国的大型引力波探测器
在美国的LIGO计划开始之后,欧洲也开始进行引力波探测计划。目前,比较大型的探测器是由英国和德国合作,在德国Hannover附近建造的GEO 600探测器,以及由法国和意大利合作,在意大利Pisa附近的VIRGO探测器。GEO 600探测器的壁长是600米,而VIRGO的臂长是3000米。相比之下,VIRGO的造价和性能都远高于GEO 600,而和LIGO相当。
大家也许会问,为什么经济实力更强的英、德两国在引力波探测器的规模上竟然会比不过法意两国呢?据说,本来前西德也要建造一个4公里臂长的探测器。但是由于东西德合并,西德支持东德,这个经费就被砍掉了,只好建造一个600米的探测器。
最近,日本也开始建造大型的KaGRA引力波探测器。早年,在日本有一个TAMA300探测器,位于东京附近的三鹰市,在日本的国家天文台院内,臂长300米。日本科学家多年来一直致力于推动大型引力波探测,这个KaGRA项目终于在2008年立项。目前,这个探测器的建设已经基本完成,进入了调试阶段。
前些年,印度也开始加入了引力波探测的行列。LIGO实验室和印度引力波物理学界已经达成协议,计划把LIGO的一部分实验设备运往印度,并在印度开设一个LIGO-India的引力波观测站。
GW150914
正可谓“谋事在人,成事在天”。回顾一下150914,它的发现是和人类历史上许多伟大发现一样,是一个偶然。
发现
在LIGO的正式运行中,都会做一个Blind Injection的操作:就是让几个合作者在数据里面偷偷的加上一些模拟的引力波信号,并且把这些信号的参数保密。这样,其他处理数据的人就算是有所发现,也没法知道真假。直到最后一刻,主持人打开信封,宣布偷偷加上的信号的参数,大家才恍然大悟。Blind Injection不但会提高士气,也会杜绝泄密。这个方法在LIGO-1的运行中颇有成效。
在2015年9月份,LIGO开始了一次工程试运行(Engineering Run)。因为只是调试运行,盲注的机制都没有组织好,所以根本就没有盲注。没想到,有些事情不能随便试的,没开始几天就发现了一个置信度超高的引力波信号。这个信号大到什么程度呢?就是只做一些简单的滤波后就可以用肉眼在数据的波形中发现了。自己看数据吧:
file:///http://images.huxiu.com/article/content/201602/12/1502236203.jpg?imagemogr2/strip/interlace/1/format/jpg
碰撞的过程
除去再次验证了爱因斯坦的神奇之处, 从这个探测到的引力波事件,我们可以学到什么呢?
file:///http://images.huxiu.com/article/content/201602/12/1502425904.jpg?imagemogr2/strip/interlace/1/format/jpg
从波的频率演化看,在低频的部分开始。
file:///C:\Users\Administrator\AppData\Roaming\Tencent\QQ\Temp\TempPic\(L9FD@C7RL8VTUXTT_UE%OV.tmp
|
|