声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2994|回复: 8

[滤波] 卡尔曼滤波器及matlab程序实现

[复制链接]
发表于 2016-5-23 09:50 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!

下面就要言归正传,讨论真正工程系统上的卡尔曼。

3. 卡尔曼滤波器算法
(The Kalman Filter Algorithm)

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg为卡尔曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。


版本一——
matlab写的的kalman滤波程序:

  1. clear
  2. N=200;
  3. w(1)=0;
  4. w=randn(1,N)
  5. x(1)=0;
  6. a=1;
  7. for k=2:N;
  8. x(k)=a*x(k-1)+w(k-1);
  9. end


  10. V=randn(1,N);
  11. q1=std(V);
  12. Rvv=q1.^2;
  13. q2=std(x);
  14. Rxx=q2.^2;
  15. q3=std(w);
  16. Rww=q3.^2;
  17. c=0.2;
  18. Y=c*x+V;

  19. p(1)=0;
  20. s(1)=0;
  21. for t=2:N;
  22. p1(t)=a.^2*p(t-1)+Rww;
  23. b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
  24. s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
  25. p(t)=p1(t)-c*b(t)*p1(t);
  26. end

  27. t=1:N;
  28. plot(t,s,'r',t,Y,'g',t,x,'b');
复制代码


版本二——
  1. %%当n=1时
  2. wo=[0;0];
  3. K=c*eye(2);
  4. A(1)=wo'*K*[0,0]'+Jmin;
  5. G=K*[0,0]'*inv(A(1));
  6. a=conj(u(1))-[0;0]'*wo;
  7. wo=wo+G*a;
  8. K=K-G*[0;0]'*K;
  9. e(1)=u(1)-[0,0]*conj(wo);
  10. ei(1,q)=abs(e(1))^2;
  11. %%当n=2时
  12. A(2)=[u(1);0]'*K*[u(1),0]'+Jmin;
  13. G=K*[u(1),0]'*inv(A(2));
  14. a=conj(u(2))-[u(1);0]'*wo;
  15. wo=wo+G*a;
  16. K=K-G*[u(1);0]'*K;
  17. e(2)=u(2)-[u(1),0]*conj(wo);
  18. ei(2,q)=abs(e(2))^2;
  19. %当n>=3时,用kalman滤波迭代
  20. for n=3:N2
  21. A(n)=[u(n-1);u(n-2)]'*K*[u(n-1),u(n-2)]'+Jmin;
  22. G=K*[u(n-1),u(n-2)]'*inv(A(n));
  23. a=conj(u(n))-[u(n-1);u(n-2)]'*wo;
  24. wo=wo+G*a;
  25. K=K-G*[u(n-1);u(n-2)]'*K;
  26. e(n)=u(n)-[u(n-1),u(n-2)]*conj(wo);
  27. ei(n,q)=abs(e(n))^2;
  28. end
  29. end
复制代码


点评

赞成: 5.0
赞成: 5
  发表于 2016-9-15 18:51

本帖被以下淘专辑推荐:

回复
分享到:

使用道具 举报

发表于 2016-5-25 20:10 | 显示全部楼层
增加一些图给大家看看哦
 楼主| 发表于 2016-5-26 11:14 | 显示全部楼层
wxid_kpnygglfe5ou22_1464232483769_22.png
发表于 2016-8-18 16:39 | 显示全部楼层
棒棒的,多谢分享
发表于 2016-8-19 09:10 | 显示全部楼层
这个每次运行的结果还不一样
发表于 2016-8-26 15:12 | 显示全部楼层
收了,谢谢!
发表于 2018-5-9 19:28 | 显示全部楼层
收到谢谢
发表于 2018-5-10 09:04 | 显示全部楼层
如果可以举报,我肯定会举报的!你抄袭《卡尔曼滤波原理及应用——MATLAB仿真》这本书,心里没点数?
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-26 02:15 , Processed in 0.091436 second(s), 28 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表