(2)非线性屈曲分析 因几何变形引起结构刚度改变的一类问题都属于非线性问题。非线性通常分为大应变、大位移和应力刚化。以上三种大应变导致结构刚度变化的因素,即单元形状改变、单元方向改变和应力刚化效应。此时应变不再假定是“小应变”而是有限应变或“大应变”。 非线性屈曲分析采用几何非线性的荷载一位移全过程跟踪有限元分析。由能量原理可得到修正的拉格朗日(U.L.)形式的非线性增量有限元基本方程:
(6)式中,
为结构在状态的切线刚度矩阵,
,其中[KE]为结构的线弹性刚度矩阵;
为
次迭代时初应力刚度或称几何刚度矩阵(轴向力规定以拉力为正),它考虑了单元内力对结构变形的影响;
为结构
次迭代时初位移刚度矩阵或称大位移矩阵,它考虑了结构位置变化对平衡的影响(或结构的变形对刚度的影响)。
为结构在
+1次迭代过程中位移增量列阵,
为
+1次迭代过程的荷载比例系数;{P}为初始选定不变的节点荷载向量;
为
次迭代时各单元内力等效的节点力向量。方程(1)的求解采用把弧长法(Arc.Length Method)和Newton—Raphson法相结合的增量迭代法。荷载增量采用弧长法自动加载。弧长法将荷载比例系数和未知位移同时作为变量,用曲线弧长来控制荷载步长,可使Newton.Raphson法平衡迭代沿一条弧收敛到其平衡路径,以避免矩阵在那些奇异点处变为奇异矩阵,从而避免了结构在加载时某些点可能出现的物理意义上的不稳定(即结构的荷载一位移曲线的斜率为零或负值),并控制收敛性,帮助稳定数值求解。 4. 基于ANSYS分析 本节选取编号1截面型式进行详细分析,其他编号截面计算步骤相同只给出计算结果。 (1)特征值屈曲分析 选取编号1截面,分析方式为静力分析,并且打开预应力选项,求解。在列杆件屈曲方程时,都假定构件有了一定的侧向变形,预应力效应与此相似。打开预应力效应是把静力分析的结果产生的几何刚度加进去。选择求解方式为Block Lanczos,并且选择提取5阶屈曲模态,并且在载荷步选项卡中设定对 5阶屈曲模态进行扩展,求解。下面几幅图显示了不同模态的结果。
线性特征值屈曲分析所产生的多阶模态结果,直观来看,是对于线性屈曲计算产生的不同特征值所绘制的变形图,然而工程实际是不会对同一个结构产生多种屈曲的,当承载使其达到第一阶屈曲的载荷时,就会发生屈曲,因此分析时只提取一阶屈曲系数,作为实际工程中应用。 提取第一阶屈曲系数FQRT1= 677030 (2)非线性屈曲分析 屈曲问题主要分为两类:分叉点屈曲和极值点屈曲。前面提到的特征值屈曲问题,属于分叉点屈曲。ANSYS 模拟特征值屈曲问题时,对于理想压杆的线性特征值屈曲问题,可以很好的模拟;但是,对于非线性特征值问题,ANSYS 并不能给出让人满意的解答。但是,可以用解决极值点屈曲问题的方式,也就是压溃理论,去求解非线性特征值问题。 由于线性特征值屈曲分析仅限于线性问题,忽略了工程实际中确实存在的非线性项,所得的结果不够准确,所以在实际工程分析中,更多的是采取非线性屈曲分析的方式,解决结构的稳定性分析问题。下面,将在 ANSYS 中实现对理想轴压杆的非线性屈曲分析,这里将采用静力学结构分析的方式,使用 Newton-Raphson算法和弧长法(Arc.Length Method)对杆结构进行非线性屈曲分析。由于本论文采用Q235钢作为材料,极限应力 进入求解器,打开大变形选项卡,并且勾选预应力选项,设定迭代子步数为200,求解。得到非线性屈曲系数为552720。最大位移发生在跨中截面处,绘出跨中截面的荷载位移曲线如图。
(3)ANSYS屈曲分析结果
(4)结果分析 <1>特征值屈曲计算结果与非线性屈曲计算结果相差超出误差允许范围,所以在工程中应采取非线性屈曲分析的方式。 <2>随着截面惯性矩的均匀减小,而特征值屈曲系数与非线性屈曲系数差值越来越小,但差值率基本相差不大。 <3>线性特征值屈曲分析所产生的多阶模态结果,是对于线性屈曲计算产生的不同特征值所得的变形。然而工程实际是不会对同一个结构产生多种屈曲的,当承载使其达到第一阶屈曲的载荷时,就会发生屈曲,因此第一节屈曲是我们设计时参照的重点。 <3>当作用在梁顶端的载荷逐渐增大时,伴随着位移增大的同时,结构发生屈曲。对于理想弹性材料,结构的支反力随着跨中截面UX 方向位移逐渐增大,并且在加载达到一定数值时发生屈曲,曲线在此位置发生了明显的斜率变化在屈曲位置之后,曲线变得平缓,并且随着加载的增加,缓慢的增大。 <4>在求解非线性问题时解法的选择。ANSYS 对屈曲问题不同处理方式有:线性特征值屈曲法,Newton-Raphson 法,弧长法。三种方法各有优劣。线性特征值屈曲法前面已经提到,不适合解决工程实际问题。Newton-Raphson 法可以控制子步数,最为常用。用弧长法作屈曲分析时,一定使用应力刚化,这在非线性屈曲分析中,由于打开了大变形选项而自动满足。弧长法由于程序可以自动控制步长,所以计算速度快,并且可以更为精确的捕捉到极值点。弧长法可以控制最大步长,如果最大步长太大,可能使求解跨过临界载荷点;得到一个错误的结果。 也可以设定最下迭代步长,使得程序可以不断缩小步长至最小步长,来达成收敛。 三、结论 1 .基于ANSYS进行屈曲分析中,单元数量的选择对分析结果影响很大,通过所得数据进行对比,当前后两个结果满足一定误差要求时,即可认为结果正确,否则应继续改变网格密度得到结果进行比较。最终找到本单元类型所需划分最佳的单元数量,本论文进行屈曲分析时选取最佳单元数量为100。 2. 线性特征值屈曲分析所产生的多阶模态结果,是对于线性屈曲计算产生的不同特征值所得的变形。然而工程实际是不会对同一个结构产生多种屈曲,当承载使其达到第一阶屈曲的载荷时,就会发生屈曲,因此第一节屈曲是我们设计时参照的重点。 3. 随着截面惯性矩的均匀减小,而特征值屈曲系数与非线性屈曲系数差值越来越小,但差值率基本相差不大。 4.特征值屈曲计算结果与非线性屈曲计算结果相差超出误差允许范围,所以在工程中应采取非线性屈曲分析。 5.当作用在梁顶端的载荷逐渐增大时,伴随着位移增大的同时,结构发生屈曲。结构的支反力随着跨中截面UX 方向位移逐渐增大,并且在加载达到一定数值时发生屈曲,曲线在此位置发生了明显的斜率变化在屈曲位置之后,曲线变得平缓,并且随着加载的增加,缓慢的增大。 6. ANSYS 对屈曲问题不同处理方式有:特征值屈曲法,Newton-Raphson 法,弧长法。在选择求解非线性问题的解法时,我们要根据问题的需要采取最为正确的问题解法。 附:命令流: /PREP7 B=0.1 H=0.1 L=5 E=2.06E11 p=-1 N=100 ET,1,BEAM189 MP,EX,1,E MP,PRXY,1,0.3 SECTYPE,1,BEAM,RECT SECDATA,B,H K,1 K,2,,L/2 K,3,,L K,10,0,L/2,L/2 L,1,2 L,2,3 LATT,1,,1,,10,,1 LESIZE,ALL,,,N LMESH,ALL FINISH /SOLU /VIEW,1,1,1,1 /ESHAPE,1.0
DK,1,UX,,,,UY,UZ,ROTY DK,3,UX,,,,UZ,ROTY FK,3,FY,p PSTRES,ON SOLVE FINISH !特征值屈曲分析 /SOLU ANTYPE,BUCKLE BUCOPT,LANB,1 MXPAND,5 OUTRES,ALL,ALL SOLVE FINISH /POST1 SET,LIST
*GET,FREQ1,MODE,1,FREQ FINISH !非线性屈曲分析 /CONFIG,NRES,500 /PREP7 TB,BISO,1,1,2 TBTEMP,0 TBDADA,,2.0E8,0 UPGEOM,0.01,1,1,'gangwenyong1','rst',' ' FINISH /solu antype,0 nlgeom,1 outres,all,all arclen,1,0 arctrm,l nsubst,500,,,1 fk,3,fY,p*freq1 solve finish /post26 nsol,2,2,u,X,deflection rforce,3,1,f,Y,reactionf /axlab,x,deflection /axlab,y,reactionf xvar,2 plvar,3 finish
来源:CAE技术联盟
|