倍频程是声学里人的可听频率范围内,将声音的频谱进行一定规则的集中,变成有限的几个频点对应的强度,这样描述比较起来容易,是一种公约的描述形式。 使用1/3倍频程主要是因为人耳对声音的感觉,其频率分辨能力不是单一频率,而是频带,而1/3倍频程曾经被认为是比较符合人耳特性的频带划分方法,不过现在心理声学里提出了Critical Band这么个频带划分方法,听说更符合人耳特性,但1/3倍频程仍在广泛使用。 分析频谱时,对于连续谱而言,分析某频率点上的声功率是没有意义的,因此有必要统计某一频带内的声功率。对于频带划分,倍频程和1/3倍频程是常用的划分方法之一,它们都是相对恒定带宽,例如1/3倍频程的带宽是中心频率的23%。 声学及振动测量仪器中的倍频程及1/3倍频程滤波主要是用于对噪声或振动进行频谱分析用的,它们是一种等百分比带宽滤波器,与人耳的频谱分析特性相似。在噪声测量中,使用1/3oct主要是将噪声的频率分布情况更直观的表示出来。便于今后的工作开展。 百分比=(2^(m/2)-2^(-m/2))*100% 其中m就是几倍频程,1/3倍频程m等于1/3。 先要知道1/3倍频程的划分方法,相关的书和国标都有公式和现成的数据表格,然后,将时间域的声信号fft变换到频率域,对定义的每个1/3倍频带的声压计算等效连续声压级。这就是1/3倍频程声压级。 - function [g,f] = oct3spec(B,A,Fs,Fc,s,n);
- % OCT3SPEC Plots a one-third-octave filter characteristics.
- % OCT3SPEC(B,A,Fs,Fc) plots the attenuation of the filter defined by
- % B and A at sampling frequency Fs. Fc is the center frequency of
- % the one-third-octave filter. The plot covers one decade on both sides
- % of Fc.
- %
- % OCT3SPEC(B,A,Fs,Fc,'ANSI',N) superposes the ANSI Order-N analog
- % specification for comparison. Default is N = 3.
- %
- % OCT3SPEC(B,A,Fs,Fc,'IEC',N) superposes the characteristics of the
- % IEC 61260 class N specification for comparison. Default is N = 1.
- %
- % [G,F] = OCT3SPEC(B,A,Fs,Fc) returns two 512-point vectors with
- % the gain (in dB) in G and logarithmically spaced frequencies in F.
- % The plot can then be obtained by SEMILOGX(F,G)
- %
- % See also OCT3DSGN, OCTSPEC, OCTDSGN.
- % Author: Christophe Couvreur, Faculte Polytechnique de Mons ( Belgium)
- % Last modification: Sept. 4, 1997, 11:00am.
- % References:
- % [1] ANSI S1.1-1986 (ASA 65-1986): Specifications for
- % Octave-Band and Fractional-Octave-Band Analog and
- % Digital Filters, 1993.
- % [2] IEC 61260 (1995-08): Electroacoustics -- Octave-Band and
- % Fractional-Octave-Band Filters, 1995.
- if (nargin < 4) | (nargin > 6)
- error('Invalide number of input arguments.');
- end
- ansi = 0;
- iec = 0;
- if nargin > 4
- if strcmp(lower(s),'ansi')
- ansi = 1;
- if nargin == 5
- n = 3;
- end
- elseif strcmp(lower(s),'cei') | strcmp(lower(s),'iec')
- iec = 1;
- if nargin == 5
- n = 1
- end
- if (n < 0) | (n > 3)
- error('IEC class must be 0, 1, or 2');
- end
- end
- end
- N = 512;
- pi = 3.14159265358979;
- F = logspace(log10(Fc/10),log10(min(Fc*10,Fs/2)),N);
- H = freqz(B,A,2*pi*F/Fs);
- G = 20*log10(abs(H));
- % Set output variables
- if nargout ~= 0
- g = G; f = F;
- return
- end
- % Generate the plot
- if (ansi) % ANSI Order-n specification
- f = logspace(log10(Fc/10),log10(Fc*10),N);
- f1 = Fc/(2^(1/6));
- f2 = Fc*(2^(1/6));
- Qr = Fc/(f2-f1);
- Qd = (pi/2/n)/(sin(pi/2/n))*Qr;
- Af = 10*log10(1+Qd^(2*n)*((f/Fc)-(Fc./f)).^(2*n));
- semilogx(F,G,f,-Af,'--');
- legend('Filter',['ANSI order-' int2str(n)],0);
- elseif (iec) % CEI specification
- semilogx(F,G);
- hold on
- if n == 0
- tolup = [ .15 .15 .15 .15 .15 -2.3 -18.0 -42.5 -62 -75 -75 ];
- tollow = [ -.15 -.2 -.4 -1.1 -4.5 -realmax -inf -inf -inf -inf -inf ];
- elseif n == 1
- tolup = [ .3 .3 .3 .3 .3 -2 -17.5 -42 -61 -70 -70 ];
- tollow = [ -.3 -.4 -.6 -1.3 -5 -realmax -inf -inf -inf -inf -inf ];
- elseif n == 2
- tolup = [ .5 .5 .5 .5 .5 -1.6 -16.5 -41 -55 -60 -60 ];
- tollow = [ -.5 -.6 -.8 -1.6 -5.5 -realmax -inf -inf -inf -inf -inf ];
- end
- % Reference frequencies in base 2 system
- f = Fc * [1 1.02676 1.05594 1.08776 1.12246 1.12246 1.29565 1.88695 ...
- 3.06955 5.43474 NaN ];
- f(length(f)) = realmax;
- ff = Fc * [1 0.97394 0.94702 0.91932 0.89090 0.89090 0.77181 0.52996 ...
- 0.32578 0.18400 NaN ];
- ff(length(ff)) = realmin;
- semilogx(F,G,f,tolup,'--');
- semilogx(F,G,f,tollow,'--');
- semilogx(F,G,ff,tolup,'--');
- semilogx(F,G,ff,tollow,'--');
- hold off
- legend('Filter',['IEC class ' int2str(n)],0);
- else
- semilogx(F,G);
- end
- xlabel('Frequency [Hz]'); ylabel('Gain [dB]');
- title(['One-third-octave filter: Fc =',int2str(Fc),' Hz, Fs = ',int2str(Fs),' Hz']);
- axis([Fc/10 Fc*10 -80 5]);
- grid on
- function [B,A] = oct3dsgn(Fc,Fs,N);
- % OCT3DSGN Design of a one-third-octave filter.
- % [B,A] = OCT3DSGN(Fc,Fs,N) designs a digital 1/3-octave filter with
- % center frequency Fc for sampling frequency Fs.
- % The filter is designed according to the Order-N specification
- % of the ANSI S1.1-1986 standard. Default value for N is 3.
- % Warning: for meaningful design results, center frequency used
- % should preferably be in range Fs/200 < Fc < Fs/5.
- % Usage of the filter: Y = FILTER(B,A,X).
- %
- % Requires the Signal Processing Toolbox.
- %
- % See also OCT3SPEC, OCTDSGN, OCTSPEC.
- % Author: Christophe Couvreur, Faculte Polytechnique de Mons (Belgium)
- % Last modification: Aug. 25, 1997, 2:00pm.
- % References:
- % [1] ANSI S1.1-1986 (ASA 65-1986): Specifications for
- % Octave-Band and Fractional-Octave-Band Analog and
- % Digital Filters, 1993.
- if (nargin > 3) | (nargin < 2)
- error('Invalide number of arguments.');
- end
- if (nargin == 2)
- N = 3;
- end
- if (Fc > 0.88*(Fs/2))
- error('Design not possible. Check frequencies.');
- end
- % Design Butterworth 2Nth-order one-third-octave filter
- % Note: BUTTER is based on a bilinear transformation, as suggested in [1].
- pi = 3.14159265358979;
- f1 = Fc/(2^(1/6));
- f2 = Fc*(2^(1/6));
- Qr = Fc/(f2-f1);
- Qd = (pi/2/N)/(sin(pi/2/N))*Qr;
- alpha = (1 + sqrt(1+4*Qd^2))/2/Qd;
- W1 = Fc/(Fs/2)/alpha;
- W2 = Fc/(Fs/2)*alpha;
- [B,A] = butter(N,[W1,W2]);
- function [p,f] = oct3bank(x);
- % OCT3BANK Simple one-third-octave filter bank.
- % OCT3BANK(X) plots one-third-octave power spectra of signal vector X.
- % Implementation based on ANSI S1.11-1986 Order-3 filters.
- % Sampling frequency Fs = 44100 Hz. Restricted one-third-octave-band
- % range (from 100 Hz to 5000 Hz). RMS power is computed in each band
- % and expressed in dB with 1 as reference level.
- %
- % [P,F] = OCT3BANK(X) returns two length-18 row-vectors with
- % the RMS power (in dB) in P and the corresponding preferred labeling
- % frequencies (ANSI S1.6-1984) in F.
- %
- % See also OCT3DSGN, OCT3SPEC, OCTDSGN, OCTSPEC.
- % Author: Christophe Couvreur, Faculte Polytechnique
复制代码
|