声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2457|回复: 0

[编程技巧] matlab ode45 函数传自定义参数用法及定步长ode5解算函数

[复制链接]
发表于 2017-1-20 17:28 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
%程序1
  1. arg1 = 2;
  2. arg2 = 1;
  3. [T,Y] = ode45('vdp1000',[0 10],[2 0], [], arg1, arg2);
  4. plot(T,Y(:,1),'-o');
复制代码


%%程序2
  1. function dy = vdp1000(t, y, flag, arg1, arg2)
  2. dy = zeros(2,1);    % a column vector
  3. dy(1) = y(2);
  4. dy(2) = arg1*(arg2 - y(1)^2)*y(2) - y(1);
复制代码


%%ode5
  1. function Y = ode5(odefun,tspan,y0,varargin)
  2. %ODE5 Solve differential equations with a non-adaptive method of order 5.
  3. % Y = ODE5(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates
  4. % the system of differential equations y' = f(t,y) by stepping from T0 to
  5. % T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.
  6. % The vector Y0 is the initial conditions at T0. Each row in the solution
  7. % array Y corresponds to a time specified in TSPAN.
  8. %
  9. % Y = ODE5(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters
  10. % P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).
  11. % This is a non-adaptive solver. The step sequence is determined by TSPAN
  12. % but the derivative function ODEFUN is evaluated multiple times per step.
  13. % The solver implements the Dormand-Prince method of order 5 in a general
  14. % framework of explicit Runge-Kutta methods.
  15. %
  16. % Example
  17. % tspan = 0:0.1:20;
  18. % y = ode5(@vdp1,tspan,[2 0]);
  19. % plot(tspan,y(:,1));
  20. % solves the system y' = vdp1(t,y) with a constant step size of 0.1,
  21. % and plots the first component of the solution.
  22. if ~isnumeric(tspan)
  23.    
  24.     error('TSPAN should be a vector of integration steps.');
  25.    
  26. end
  27. if ~isnumeric(y0)
  28.    
  29.     error('Y0 should be a vector of initial conditions.');
  30.    
  31. end
  32. h = diff(tspan);
  33. if any(sign(h(1))*h <= 0)
  34.    
  35.     error('Entries of TSPAN are not in order.')
  36.    
  37. end
  38. try
  39.    
  40.     f0 = feval_r(odefun,tspan(1),y0,varargin{:});
  41.    
  42. catch
  43.    
  44.     msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];
  45.    
  46.     error(msg);
  47.    
  48. end
  49. y0 = y0(:); % Make a column vector.
  50. if ~isequal(size(y0),size(f0))
  51.    
  52.     error('Inconsistent sizes of Y0 and f(t0,y0).');
  53.    
  54. end
  55. neq = length(y0);
  56. N = length(tspan);
  57. Y = zeros(neq,N);
  58. % Method coefficients -- Butcher's tableau
  59. %
  60. % C | A
  61. % --+---
  62. % | B
  63. C = [1/5; 3/10; 4/5; 8/9; 1];
  64. A = [ 1/5, 0, 0, 0, 0
  65.    
  66. 3/40, 9/40, 0, 0, 0
  67. 44/45 -56/15, 32/9, 0, 0
  68. 19372/6561, -25360/2187, 64448/6561, -212/729, 0
  69. 9017/3168, -355/33, 46732/5247, 49/176, -5103/18656];
  70. B = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84];
  71. % More convenient storage
  72. A = A.';
  73. B = B(:);
  74. nstages = length(B);
  75. F = zeros(neq,nstages);
  76. Y(:,1) = y0;
  77. for i = 2:N
  78.    
  79.     ti = tspan(i-1);
  80.    
  81.     hi = h(i-1);
  82.    
  83.     yi = Y(:,i-1);
  84.    
  85.     % General explicit Runge-Kutta framework
  86.    
  87.     F(:,1) = feval_r(odefun,ti,yi,varargin{:});
  88.    
  89.     for stage = 2:nstages
  90.       
  91.         tstage = ti + C(stage-1)*hi;
  92.       
  93.         ystage = yi + F(:,1:stage-1)*(hi*A(1:stage-1,stage-1));
  94.       
  95.         F(:,stage) = feval_r(odefun,tstage,ystage,varargin{:});
  96.       
  97.     end
  98.    
  99.     Y(:,i) = yi + F*(hi*B);
  100.    
  101. end
  102. Y = Y.';
复制代码


来自:jlxiaohuo的博客
回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-5 15:56 , Processed in 0.077651 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表