声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1866|回复: 0

两种实验模态分析法对应的窗函数选择

[复制链接]
发表于 2017-12-21 09:25 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
  导读
  针对具体的模态测试,到底该如何选择窗函数,在不同的模态测试方法中,有何不同?

  模态测试一般分为:

      · 激振器法,常用的是矩形窗和汉宁窗;
        · 力锤法,常用的是指数窗。


  激振器法的窗函数
  矩形窗
  矩形窗是单位增益的加权函数,当采集的时域信号是一个数据块或满足FFT周期需求时,一般加矩形窗。矩形窗用于激振器测试时,要求激励信号为正弦扫频和步进正弦等,这些信号通常都满足FFT变换的周期性要求。
1.png
2.png

  汉宁窗
  汉宁窗是个余弦形状的加权函数,时域数据始端和末端为零。这对那些不满足FFT变换周期性要求的信号非常有用。激振器进行实验模态测试时,常使用随机激励,但由之而来的问题是信号在采集周期内永远不具有重复性。因此,必须加窗,以减少泄漏。随机激励最常用的窗是汉宁窗。使用汉宁窗时,其允许幅值失真小于20%,这个数字较不加窗时小了很多。
3.png
4.png
  由于泄漏和加窗与数据失真相关,因此伪随机、周期随机、猝发随机、正弦扫频和步进正弦等激励技术就被提出,以消除泄漏。这些激励方式都满足FFT变换要求,因而不需要加窗函数。

  力锤法的窗函数
  指数窗
  力锤法测试是模态测试较常用的测试方法。力锤法模态测试时,通常使用指数窗。在测试中,总存在一系列指数衰减的正弦波组合的瞬态响应。若能完全捕获上述瞬态响应信号,则测量不存在泄漏。

  但在大多数结构中,指数衰减响应信号经常在采样时间内基本上没有完全衰减,也就不满足FFT变换的要求。在此之下,通常为响应信号施加指数窗,从而,加窗后的信号可以更好地满足FFT变换要求。如下图所示:
5.png
  在这种情况下,整个响应信号几乎能被捕获到,但其实是以加窗为代价的。减少指数窗应用的一个方法是调整测量时间,从而考虑捕获更长的时域数据,或者增加样本总数,其直接效应就是获取更长的时域数据。无论如何,如果信号在采样周期的末端本质上没有衰减到零,那么必须加指数窗,以减少泄漏所造成的影响。

  各类窗函数都有自己的应用条件,在使用窗函数时必须多加小心。另外,在模态测试过程中尽量提供无泄漏的测量,避免加窗。无泄漏的测量,本质上,是设法使信号满足傅立叶变换的要求:“要么采集周期信号,要么采集的信号能覆盖最小周期内的信息”。

  来源:吉兴汽车声学部件科技有限公司公众号
  作者:陈晓君

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-14 10:56 , Processed in 0.074442 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表