马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
弹性力学和塑性力学时固体力学的两个重要分支。
固体力学
研究固体材料及其构成的物体结构在外部干扰(载荷\温度\变化等)下的力学响应的科学.按不同的研究对象区分为不同的学科分支.
弹性力学:
研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括外部干扰下弹性物体的内力【应力】,变形【应变】和位移以及与之相关的原理\理论和方法。
塑性力学:
则研究他们在塑性变形阶段的力学响应。
弹性和塑性的区别与联系:
大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或者基本弹性的;当荷载渐渐增加时,材料将进入塑性变形阶段,即材料的行为呈现塑性的.所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在一定条件下主要呈现弹性性质的材料或物体。
弹塑性材料
大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形;因此有时又称弹塑性材料
弹性设计方法:是以弹性分析为基础的结构设计,假定材料为理想弹性地,相应地这种设计观点便以分析结果的实际使用范围作为设计的失效准则,即认为应力[严格地说是应力的某一函数值]达到一定限值[弹性界限],将进入塑性变形阶段时,材料将破坏.
塑性设计方法:结构中如果有一处或一部分材料"破坏",则认为结构失效(丧失所规定的效用).由于一般的结构都处于非均匀受力状态。当高应力点或高应力区的材料到达弹性界限时、结构的大部分材料仍处于弹性界限之内;而实际材料在应力超过弹性界限以后并不实际发生破坏,仍具有一定的继续承受应力(载荷)的能力,只不过刚度相对地降低。因此弹性设计方法不能充分发挥材料的潜力,导致材料的某种浪费。实际上,当结构内的局部材料进入塑性变形阶段,在继续增加外载时,结构的外力(应力)分布规律与弹性阶段不同,即所谓内力(应力)重分布;这种重分布总的是使内力(应力)分布更趋均匀,使原来处于低应力区的材料承受更大的应力,从而更好地发挥材料的潜力,提高结构的承载能力。显然,以塑性分析为基础的设计比弹性设计更为优越。但是,塑性设计允许结构有更大的变形,以及完全卸载后结构将存在残余变形。因此,对于刚度要求较高及不允许出现残余变形的场合、这种设计方法不适用。
研究对象和方法
是研究结构的强度、刚度和稳定性问题(有时统称为强度问题),以及结构的“破坏”准则或失效准则.在方法上是在一定的边界条件(或再加上初始条件)下求解三类基本方程:平衡(运动)方程、几何方程和本构〔物理)方程。以实验结果为依据,所得结果由实验来检验.
力学模型的相关知识
'模型'是'原型'的近似描述或表示。建立模型的原则。
一是科学性----能尽可能地近似表示原型;
二是实用性----能方便地应用。
显然,一种科学(力学)模型的建立,要受到科学技术水平的制约。总的来说,力学模型大致有三个层次:材料构造模塑,材料力学性质模型,以及结构计算模型。第一类模型属于基本的,它们属于科学假设范畴。因此,往往以“假设”的形式出现。'模型'有时还与一种理论相对应;因而在有些情况下,'模型'、'假设'和'理论'可以是等义的。
材料构造模型:
连续性假设:假定固体材料是连续介质,即组成物体的质点之间不存在任何空隙,连续紧密地分布于物体所占的整个空间。由此,我们可以认为,一些物理量如应力,应变和位移等可以表示为坐标的连续函数,从而在作数学推导时可方便地运用连续和极限的概念,事实上,一切物体都是由微粒组成的,都不可能符合这个假设。但可以想象,当微粒尺寸及各微粒之间的距离远比物体的几何尺寸小时。运用这个假设不会引起显著的误差
均匀及各向同性假设: 假设物体由同一类型的均匀材料组成,即物体内各点与各方向上的物理性质相同(各向同性);物体各部分具有相同的物理性质.不会随坐标的改变而变化(均匀性)。
材料力学性质模型:
均弹性材料: 弹性材料是对实际固体材料的一种抽象.它构成一个近似于真实材料的理想模型。弹性材料的特征是:物体在变形过程中,对应于一定的温度,应力与应变之间呈一一对应的关系,它和载荷的持续时间及变形历史无关;卸载后,其变形可以完全恢复。在变形过程中,应力与应变之间呈线性规律,即服从胡克(Hooke R)规律的弹性材料,称为线性弹性材抖;而某些金属和塑料等,其应力与应变之间呈非线性性质,称为非线性弹性材料。材料弹性规律的应用,就成为弹性力学区别于其它固体力学分支学科的本质特征。
塑性材料:塑性材料也是固体材料的一种理想模型。塑性材料的特征
是:在变形过程中,应力和应变不再具有一一对应的关系,应变的大小与加载的历史有关但与时间无关;卸载过程中,应力与应变之间按材料固有的弹性规律变化,完全卸载后。物体保持一个永久变形,或称残余变形。变形的不可恢复性是塑性材料的基本特征。
粘性材料:当材料的力学性质具有时间效应,即材料的力学性质与载
荷的待续时间和加载速率相关时,称为粘性材料。实际材料都具有不同程度的枯性性质,只不过有时可以略去不计。
结构计算模型:
小变形假设: 假定物体在外部因素作用下所产生的位移远小于物体原来的尺寸。应用这条假设,可使计算模型大为简化。例如,在研究物体的平衡时,可不考虑由于变形所引起的物体尺寸位置的变化;在建立几何方程和物理方程时,可以略去其中的二次及更高次项,使得到的基本方程是线性偏微分方程组。与之相对立的是大变形情况,这时必须考虑几何关系中的二阶或高阶非线性项,导致变形与载荷之间为非线性关系.得到的基本方程是更难求解的非线性偏微分方程组。
无初应力假设:假定物体原来是处于一种无应力的自然状态。即在外力作用以前,物体内各点应力均为零。我们的分析计算是从这种状态出发的。
|