|
楼主 |
发表于 2005-8-9 21:35
|
显示全部楼层
由以上的分析可知,该算法的分割步骤和合并步骤总共耗时O(n)。因此,算法耗费的计算时间T(n)满足递归方程:
解此递归方程可得T(n)=O(nlogn)。
【问题】循环赛日程表
问题描述:设有n=2k个运动员要进行网球循环赛。现要设计一个满足以下要求的比赛日程表:
(1)每个选手必须与其他n-1个选手各赛一次;
(2)每个选手一天只能参赛一次;
(3)循环赛在n-1天内结束。
请按此要求将比赛日程表设计成有n行和n-1列的一个表。在表中的第i行,第j列处填入第i个选手在第j天所遇到的选手。其中1≤i≤n,1≤j≤n-1。
按分治策略,我们可以将所有的选手分为两半,则n个选手的比赛日程表可以通过n/2个选手的比赛日程表来决定。递归地用这种一分为二的策略对选手进行划分,直到只剩下两个选手时,比赛日程表的制定就变得很简单。这时只要让这两个选手进行比赛就可以了。
图1所列出的正方形表(3)是8个选手的比赛日程表。其中左上角与左下角的两小块分别为选手1至选手4和选手5至选手8前3天的比赛日程。据此,将左上角小块中的所有数字按其相对位置抄到右下角,又将左下角小块中的所有数字按其相对位置抄到右上角,这样我们就分别安排好了选手1至选手4和选手5至选手8在后4天的比赛日程。依此思想容易将这个比赛日程表推广到具有任意多个选手的情形。
八、动态规划法
经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。以下先用实例说明动态规划方法的使用。
【问题】 求两字符序列的最长公共字符子序列
问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
给定两个序列A和B,称序列Z是A和B的公共子序列,是指Z同是A和B的子序列。问题要求已知两序列A和B的最长公共子序列。
如采用列举A的所有子序列,并一一检查其是否又是B的子序列,并随时记录所发现的子序列,最终求出最长公共子序列。这种方法因耗时太多而不可取。
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。
定义c[j]为序列“a0,a1,…,ai-2”和“b0,b1,…,bj-1”的最长公共子序列的长度,计算c[j]可递归地表述如下:
(1)c[j]=0 如果i=0或j=0;
(2)c[j]= c[i-1][j-1]+1 如果I,j>0,且a[i-1]=b[j-1];
(3)c[j]=max(c[j-1],c[i-1][j]) 如果I,j>0,且a[i-1]!=b[j-1]。
按此算式可写出计算两个序列的最长公共子序列的长度函数。由于c[j]的产生仅依赖于c[i-1][j-1]、c[i-1][j]和c[j-1],故可以从c[m][n]开始,跟踪c[j]的产生过程,逆向构造出最长公共子序列。细节见程序。
# include <stdio.h>
# include <string.h>
# define N 100
char a[N],b[N],str[N];
int lcs_len(char *a, char *b, int c[ ][ N])
{ int m=strlen(a), n=strlen(b), i,j;
for (i=0;i<=m;i++) c[0]=0;
for (i=0;i<=n;i++) c[0]=0;
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
if (a[i-1]==b[j-1])
c[j]=c[i-1][j-1]+1;
else if (c[i-1][j]>=c[j-1])
c[j]=c[i-1][j];
else
c[j]=c[j-1];
return c[m][n];
}
char *buile_lcs(char s[ ],char *a, char *b)
{ int k, i=strlen(a), j=strlen(b);
k=lcs_len(a,b,c);
s[k]=’\0’;
while (k>0)
if (c[j]==c[i-1][j]) i--;
else if (c[j]==c[j-1]) j--;
else { s[--k]=a[i-1];
i--; j--;
}
return s;
}
void main()
{ printf (“Enter two string(<%d)!\n”,N);
scanf(“%s%s”,a,b);
printf(“LCS=%s\n”,build_lcs(str,a,b));
} |
|