马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
<P align=center><FONT face=黑体 color=#4d2bd5 size=3>学数的苦与乐</FONT> <br>作 者: chowkafat(kafat) 2004-03-31 19:46:09 :0 :0 <br>原文:<a href="http://www.geocities.com/kfzhouy/Mathpassage1.html" target="_blank" ><FONT color=#000000>http://www.geocities.com/kfzhouy/Mathpassage1.html</FONT></A> </P>
<P align=center><FONT color=#0909f7 size=3>学数之苦</FONT> <br>看数学书跟看小说或其它消闲书籍不同,不能「随随便便」地读,因为读数学书必须理解,不仅是对前文后理的理解,而且是对书中的演算或证明每一步的理解。因此读数学书就像跟作者一起在做运算,有时心算算不了还要拿纸笔出来进行笔算。有些人也许采用实用主义的观点,认为看数学书只需明白有关公式、定理的意义和用途,而不必深究这些公式、定理是如何推导出来的,因而可以跳过这些证明不看。 </P>
<P>这种观点对于初学数学的人或者不打算深入了解有关公式、定理的人来说或许是正确的,但如果你希望对这些公式、定理有进一步的了解,那就不能不看证明了。事实上,证明往往就是整本数学书的精粹。假如你翻开一本典型的数学教科书,你会发现这本教科书的大部分篇幅都是由定理(Theorem)(注1)的证明构成的。读数学书就是看(理解)这一条条定理的证明,有些定理的证明还长达数页,有时由于看不懂证明的某一步骤是如何推导的,往往须花费很长时间苦思冥想,所以看数学书绝不是「消闲」的活动,而是颇费神的。 </P>
<P>有些人或许认为数学教科书既然是由数学家写的,我们大可相信他们的证明没有错误,因而无需仔细看证明的每一步,此说其实未必尽然。首先,看证明的目的是为了深入了解某定理与其它定理或定义的逻辑依存关系,如果只是随便地看看证明而不细心理解其理据,那么有关内容只是过眼云烟,看了还是未完全理解其意义。其次,看证明往往就是锻炼逻辑推理和数学运算技巧的机会,不仅能提高我们的推理和运算能力,而且还能增强自信心,使自己不再惧怕繁琐的算式。第三,定理的证明常常须用上先前已证明的定理或甚至其它数学学科的知识(假设这些知识已成为读者的常识),因此看证明就是温习这些旧知识的机会。我们决不可轻看温习旧知识对学习数学的重要性。在某程度上,学数其实是一个「浸」的过程。我们常常看到这样一个现象,某些新概念在初接触时觉得甚难理解,但当我们多接触这些概念几次,就会开始觉得这些概念其实并不那么陌生。假以时日,甚至会成为我们常识的一部分。总上所述,看证明有时是一种痛苦但又必要的过程。 </P>
<P>学数之苦不仅在于看数学书的费劲,还在于学数往往不能一蹴而就,而须一点一滴累积。我对某些抽象数学概念的理解(例如流形Manifold、微分形式Differential Form、线性泛函Linear Functional等)常常是经过断断续续看不同的书,从不同角度讨论同一个概念而一点一滴累积的。有时在看了第一本讨论这概念的书后以为自己明了,但很快便会忘记,需要再看第二本、第三本才能慢慢领略其真谛。因此可以说,看数学书甚少是可以全本都看得明的,而知识的增长不是直线上升,而是呈螺旋式上升。数学知识的每一步增长都要经过艰苦的努力,其中还夹杂不知多少失望、沮丧和惶恐。 </P>
<P>数学书之难读不在于算式之繁,而在于某些数学概念之抽象。其实算式一般是具体易明的,即使很繁,只要多点耐性,终究也能应付得来。但如果概念十分抽象而书本中又缺乏实例,那就真教人丈八金刚摸不着头脑。例如对于很多人来说,在平面上理解立体图形便是一件很痛苦的事。但其实这已不算十分困难,因为立体(即三维空间)终究是我们日常生活于其中的空间,是我们所熟悉的。某些数学学科(例如拓朴学Topology)所研究的常常是三维以上的空间或图形,根本无法画出来,那就更难理解了。例如在拓朴学中便有两个著名图形(克莱因瓶Klein Bottle和射影平面Projective Plane)是超出三维空间的。在理解这些图形时,根本没有现实世界中的实例,只能通过想象和借助模拟方法抽象地理解。如果四维空间还可以透过跟三维空间模拟去理解,那么微分拓朴(Differential Topology)中的「七维怪球面」便真的只能靠艰苦的推理了。 </P>
<P>数学的抽象性往往还不是一层的抽象,更常常是多层的抽象。就以抽象代数(Abstract Algebra)为例,它所研究的群(Group)、环(Ring)、域(Field,有些书译作「体」)、模(Module)、格(Lattice)、布尔代数(Boolean Algebra)等本身便是抽象的。所谓「抽象」(Abstraction),就是抓着一些对象的共同点加以整体研究,而撇除这些对象的个别特点。例如实数(Real Number)、复数(Complex Number)、向量(Vector)、矩阵(Matrix)等本来是各有不同特点的集合(Set),但是它们在加法运算上却有相同之处,即加法在这些集合上满足封闭性 (Closure)、结合性(Associativity),存在单位元(Identity)和逆元(Inverse),于是我们便可以把这种共同点抽象出来,把具有上述四种特性的集合及有关运算统称为「群」,进行综合研究。这可以称为第一层的抽象。 </P>
<P>可是抽象代数学并不满足于只是把各种不同集合及其运算抽象成「群」,而是进而研究不同群之间的关系,并引出「同态」(Homomorphism)和「同构」(Isomorphism)的概念。同态和同构就是不同群之间的一种函数关系,在抽象程度上比群的运算更高一级。而新近发展起来的范畴论(Category Theory)更以集合与集合之间的函数关系重新厘定数学的基础,并且引出范畴(Category)、函子(Functor)、自然变换(Natural Transformation) 等概念,而且这些概念一个比一个抽象。数学的抽象程度似乎是永无止境的。 </P><br>
<P>不仅数学概念是抽象的,数学的证明方法也是抽象的,这是因为数学证明是基于纯粹的逻辑思维,即从给定的前提和已有的概念、定理出发,根据正确的推理规则推出结果。在这过程中,最重要的是推理规则,至于前提正确与否反倒是次要的。此一情况在反证法(Proof by Contradiction)中最为明显。反证法的证明方法是首先假设待证的结论是错的(即假设结论的否定是正确的),然后尝试由此推导出矛盾,矛盾的存在证明最初的假设 (即待证结论的否定)是不正确的,由此便间接证明了待证结论。从反证法的原理可以看到,数学的推理是纯形式的,即数学家在推理时只注意使用正确的推理规则,而不必考虑前提是否正确。因此,数学家不仅要懂得如何从正确的前提推出正确的结论,也要懂得如何从错误的前提出发,在推理中发现矛盾,从而证明前提是错误的。这不能不说是对思维的颇高要求。 </P>
<P>造成数学抽象性的另一个原因是数学研究的对象往往是无限的,而人的经验却是有限的。以有限的经验尝试理解无限的事物,常会有「以偏概全」或「挂一漏万」的弊端。因此数学使用演绎法(Deduction)而非归纳法 (Induction)(注2),因为只有演绎法才能保证推理的结论在无限的情况下是正确的(注3)。数学上的演绎证明常常采用这样的形式:假设一个具有某些性质的一般个体(变量variable),然后根据此个体的性质进行推理。例如,在证明某关于偶数的命题时,首先假设一个偶数变量x,由于x是偶数,故可把它表达为2n,其中n为任意整数。在证明过程中我们所着眼的由始至终均应是这个一般的x=2n,而不是任何一个具体的偶数(如2、4、6 等)。换言之,我们撇除了2、4、6这些数的个别特点,而只着眼于这些数的共同点(即它们都可以表达为2n)。 </P>
<P>可是学数的人不能总是抽象地考虑一般的对象,因为一般的对象有时会过于抽象而难以理解。事实上,学数的人在理解一个新命题或面对一个新问题时,常须使用「特殊化」(Specialization)的手段,即把一般的对象换成具体的特例以帮助理解。例如,在初接触「偶数和奇数的积是偶数」此一命题时,如果觉得很抽象难明,可以先把命题中的「偶数」和「奇数」换成6和3这两个具体数字,然后求其积得18,证实6和3的积的确是偶数。又例如在证明几何题时,常常需要借助画图帮助思考,画图也是特殊化的方法。可是特殊化有时会令学数的人误把一些非本质的属性带入思考中,从而导致错误理解或错误解题。因此,学数的人在特殊化时必须小心分清在他们所选的特例中哪些性质是本质的,哪些并非本质的,这正是难点之所在。 </P>
<P align=center>最后我想把学习数学比作登山,当你还身处山脚并向上望时,只见山峰处被浓浓的云雾遮盖着,以为这座山就那么高,心想只要走到那里便已到达颇高境界。但当你穿过浓雾,正要沾沾自喜之际,抬头一看,却赫然发现眼前竟又出现多个高峰,原来刚才只是因为眼界被浓雾遮蔽,看不见雄伟的山势;当穿过云雾后,才发现原来前面的路还多着呢。学数也是这样,每当你经过一番努力,以为已经攀登了一个「高峰」时,才发现前面原来还有很多个高峰。而且越往上走,所发现的高峰便越多。有时面对眼前雄伟壮观的景象,心想恐怕这一辈子也难以攀上其中一个,真有点望「峰」兴叹之感。 </P>
[此贴子已经被作者于2005-8-18 7:54:23编辑过]
|