马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
- #include<stdlib.h>
- #include<stdio.h>
- /*n表示几等分,n+1表示他输出的个数*/
- int RungeKutta(double y0,double a,double b,int n,double *x,double *y,int style,double (*function)(double,double))
- {
- double h=(b-a)/n,k1,k2,k3,k4;
- int i;
- // x=(double*)malloc((n+1)*sizeof(double));
- // y=(double*)malloc((n+1)*sizeof(double));
- x[0]=a;
- y[0]=y0;
- switch(style)
- {
- case 2:
- for(i=0;i<n;i++)
- {
- x[i+1]=x[i]+h;
- k1=function(x[i],y[i]);
- k2=function(x[i]+h/2,y[i]+h*k1/2);
- y[i+1]=y[i]+h*k2;
- }
- break;
- case 3:
- for(i=0;i<n;i++)
- {
- x[i+1]=x[i]+h;
- k1=function(x[i],y[i]);
- k2=function(x[i]+h/2,y[i]+h*k1/2);
- k3=function(x[i]+h,y[i]-h*k1+2*h*k2);
- y[i+1]=y[i]+h*(k1+4*k2+k3)/6;
- }
- break;
- case 4:
- for(i=0;i<n;i++)
- {
- x[i+1]=x[i]+h;
- k1=function(x[i],y[i]);
- k2=function(x[i]+h/2,y[i]+h*k1/2);
- k3=function(x[i]+h/2,y[i]+h*k2/2);
- k4=function(x[i]+h,y[i]+h*k3);
- y[i+1]=y[i]+h*(k1+2*k2+2*k3+k4)/6;
- }
- break;
- default:
- return 0;
- }
- return 1;
- }
- double function(double x,double y)
- {
- return y-2*x/y;
- }
- //例子求y'=y-2*x/y(0<x<1);y0=1;
- /*
- int main()
- {
- double x[6],y[6];
- printf("用二阶龙格-库塔方法\n");
- RungeKutta(1,0,1,5,x,y,2,function);
- for(int i=0;i<6;i++)
- printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);
- printf("用三阶龙格-库塔方法\n");
- RungeKutta(1,0,1,5,x,y,3,function);
- for(i=0;i<6;i++)
- printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);
- printf("用四阶龙格-库塔方法\n");
- RungeKutta(1,0,1,5,x,y,4,function);
- for(i=0;i<6;i++)
- printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);
- return 1;
复制代码 |