声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2392|回复: 0

[分形与混沌] [转帖]数学分形简介

[复制链接]
发表于 2005-9-16 08:51 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
<P><STRONG>谁创立了分形几何学?</STRONG>
<P>    <FONT color=#003300>1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。</FONT></P>
<P><STRONG>分形几何与传统几何相比有什么特点:</STRONG></P>
<P>    <FONT color=#003333>⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。<BR>    ⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。</FONT></P>
<P><STRONG>什么是分维?</STRONG></P>
<P><STRONG>   <FONT color=#003366> </FONT></STRONG><FONT color=#003366>在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。<BR>    分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:</FONT></P>
<P><FONT color=#003366>         a^D=b,     D=logb/loga</FONT></P>
<P><FONT color=#003366>的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。另一方面,当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。与此类似,如果我们画一个Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。其实,Koch曲线的维数是1.2618……。</FONT></P>
<P><STRONG>Fractal(分形)一词的由来</STRONG></P>
<P>    <FONT color=#003399>据曼德勃罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。在70年代中期以前,曼德勃罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。曼德勃罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花僚乱的满天繁星等。它们的特点是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形。</FONT></P>
<P><STRONG>分形的定义</STRONG></P>
<P><STRONG>    </STRONG><FONT color=#0033cc>曼德勃罗曾经为分形下过两个定义:</FONT></P><FONT color=#0033cc>    (1)满足下式条件            Dim(A)&gt;dim(A) 的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。     (2)部分与整体以某种形式相似的形,称为分形。     然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。     (i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。     (ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。     (iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。     (iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。     (v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。 </FONT>
<P><STRONG>为什么要研究分形?</STRONG></P>
<P><STRONG>  <FONT color=#0033ff> </FONT></STRONG><FONT color=#0033ff>首先,分形形态是自然界普遍存在的,研究分形,是探讨自然界的复杂事物的客观规律及其内在联系的需要,分形提供了新的概念和方法。</FONT></P><FONT color=#0033ff>    其次,分形具有广阔的应用前景,在分形的发展过程中,许多传统的科学难题,由于分形的引入而取得显著进展。     分形作为一种新的概念和方法,正在许多领域开展应用探索。80年代初国外开始的“分形热”经久不息。美国著名物理学家惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。</FONT>

本帖被以下淘专辑推荐:

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-5-6 00:54 , Processed in 0.050025 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表