造化爱几何<BR><BR>Direct arguments remain essential, but 3-dimensional topology has now<BR>firmly rejoined the main stream of mathematics.<BR><BR>—— C. T. C. Wall<BR><BR><BR>Riemann 对几何的认识适用于任何微分流形:我们总可以给微分流形赋予一个<BR>Riemann度量,从而研究上面的几何。Klein 的观点就不是那么普适了,因为 Klein<BR>意义下的几何对度量的要求非常特殊,并不是所有的流形上都能有这样的几何。不<BR>过二维曲面上都可以有 Klein 式的几何,这就是 Riemann, Klein, Poincar\'e,<BR>Koebe 等人所证明的单值化(uniformization)定理的内容。举例子说,在可定向闭<BR>曲面里,S^2上当然是球面几何,T^2上则可赋予欧氏几何,双环面等更复杂的曲面<BR>上可以有双曲几何。<BR><BR>三维以上就没有这么好运了,Thurston 的天才创见就在于:提出了单值化定理<BR>在三维情形的类比,我们将在下面向读者简略介绍其内容。<BR><BR>类似于前面所介绍的曲面的连通和,对三维流形也可以有连通和的概念。拿两<BR>个三维流形,在每个里面挖去一个开的实心球,这样每个三维流形里就出现了一个<BR>空穴。然后把两个带空穴的流形沿着空穴的边界(是球面)粘起来,得到的就是两个<BR>流形的连通和。连通和的逆操作就称为连通和分解,即把一个三维流形沿着某个满<BR>足一定条件的球面割开,使之分为两块。然后沿着那个球面在每块上粘一个实心球。<BR>对每个得到的流形,还可以继续作连通和分解,直至无可再分。<BR><BR>任取一个紧致的(可能带边)三维流形,尽量作连通和,把它分成尽可能简单的<BR>三维流形的连通和,就好比对整数进行质因数分解。这一步的存在性是由 H. Kneser<BR>在1929年证明的。五十年代末 John Milnor 发现怪球后,转而研究三维流形,首先<BR>考虑的就是这一步。有人告诉他 Kneser 已经做了这方面的工作,Milnor 便去研读<BR>原文,发现把证明方法稍加改进还可以进一步证明某种唯一性。Kneser-Milnor 的<BR>这个定理就是我们处理三维流形的第1步。<BR><BR>拓扑学家的基本想法是沿着一些曲面把三维流形割开,第1步本质上是沿着一些<BR>球面割开,而球面可说是最简单的曲面。另外一种简单的曲面是圆盘,——如果起<BR>初考虑的是带边流形的话,那可能还需要沿着一些圆盘继续切割。这姑且算作第1.5<BR>步,它的可行性是依据 Papakyriakopoulos 的奠基性工作。<BR><BR>除了球面和圆盘外,最简单的曲面就是环面和平环(annulus,即两个同心圆及<BR>其间夹的部分)。上世纪七十年代,Waldhausen, Jaco, Shalen, Johannson 证明了:<BR>经前面处理后的三维流形,有唯一的方法沿着一些环面(如果是带边流形还要加上平<BR>环)割开,使每小块尽可能简单。这就是我们的第2步,通常用后三人的姓命名为 JSJ<BR>分解。(见[JS],[Jo].)<BR><BR>Jaco 等人公布他们的工作后,Thurston 几乎立即敏锐地洞察到其中的几何内<BR>蕴。他指出,紧致三维流形经过前面若干步操作后,剩下的每一小块都能赋予几何<BR>结构,即附录二所说的八种几何结构之一。而且这种几何结构在某种意义上是比较<BR>“好”的,例如体积有限、“直线”都可无限延伸等等。这便是我们今天所说的<BR>Thurston 的几何化猜想(geometrization conjecture)。Thurston 本人对 Haken<BR>流形证明了他的猜想,这已经涵盖了绝大多数情形。但他的证明相当艰深,强烈地<BR>依赖于几何直观。Thurston 本人只是在 Princeton 的课堂上讲授这一证明,并将<BR>未正式出版的讲义[Th1]在圈内散发。光直接向他索要讲义的就超过一千人,间接复<BR>印的则更多,可见他的工作影响之巨。Thurston 后来也曾经想正式发表他的证明。<BR>他计划写一系列共7篇文章,第一篇[Th3]于1981年投出,1986年才得以发表,可见<BR>其艰深晦涩。第二篇只有手稿在圈内流传,后面的几篇甚至根本没有出现。<BR><BR>Thurston 本人曾说,他对三维流形的感觉是写不出来的。这种述而不作的态度<BR>引来包括 J. P. Serre 在内的一些推崇严格论证的数学家的批评。但这并没有妨碍<BR>Thurston 获得1983年的 Fields 奖。数学当然需要严格性,但像 Thurston 这样直<BR>觉远超乎常人的天才人物,根本无必要把精力放在琐碎细节的验证上。这些体力活<BR>自然有很多人抢着替他干,其中包括许多卓有成就的数学家。像 John Morgan 就曾<BR>给出 Haken 流形的几何化定理的较严格的不完全证明(见[MB]),McMullen 以别的<BR>方法也给过严格证明。同样的事情也发生在 Thurston 其余的几个重要定理上。直<BR>至今日,他那些未严格证明的定理还成为不少人论文的源泉。<BR><BR>需要指出,在几何化猜想之前,Thurston 已经因为他在三维流形上的foliation<BR>方面的工作获得几何、拓扑方面的最高奖 Veblen 奖。而且他的文风一直以简洁清<BR>晰著称,这使他在圈内获得良好的声誉。所以如果你只是一个初出茅庐的毛头小伙,<BR>你就必须做一些非常实实在在的工作以立足;只有当你成为 Thurston, Gromov 那<BR>样的大师时,你才有资格指点江山、勾画蓝图,而把具体工作留给别人去做。<BR><BR>Thurston 几何化猜想可以直接推出 Poincar\'e 猜想,最近对 Poincar\'e 猜<BR>想的突破就从这里开始。但 Thurston 工作的重要性并不光是能推出 Poincar\'e<BR>猜想。因为 Poincar\'e 猜想只是流形分类中遇到的一个特殊问题,而 Thurston<BR>描述出了对所有三维流形进行分类的大纲。而且他把低维拓扑与古典几何(尤其是双<BR>曲几何)、Kleinian群、李群、复分析、动力系统等许多数学分支联系到了一起。在<BR>他之前,低维拓扑虽然也做得很热闹,也有 Milnor 等大人物涉足其中,但毕竟只是<BR>拓扑里一个偏僻的分支,引不起非拓扑学家的兴趣。 Thurston 等人的工作之后,低<BR>维拓扑才迅速在数学里占据了核心地位,引起广泛关注。<BR><BR><BR>参考文献。<BR><BR>[Hem] J. Hempel, "3-Manifolds", Princeton University Press (1976).<BR><BR><BR>[JS] W. H. Jaco, and P. B. Shalen, "Seifert fibered spaces in 3-manifolds",<BR>Mem. Amer. Math. Soc. No.220 (1979).<BR><BR>[Jo] K. Johannson, "Homotopy equivalence of 3-manifolds with boundaries",<BR>Lecture Notes in Mathematics 761, Springer-Verlag (1979).<BR><BR>[MB] J. W. Morgan, and H. Bass, "The Smith conjecture", Academic Press<BR>(1984).<BR><BR>[Th1] W. P. Thurston, "The geometry and topology of 3-manifolds", Princeton<BR>University (1978).<BR><BR>[Th3] W. P. Thurston, "Hyperbolic structures on 3-manifolds I: Deformation<BR>of acylindrical manifolds", Ann. Math. 124(1986), 203-246. <BR><BR> |