<P align=center>多体动力学应用系列文章之三 <BR>
<P align=center></P>
<P align=center></P>
<P align=center>
<P align=center></P>
<P align=center></P>
<P align=center>邱向军 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none?>
<P>
<P>
<P none? mso-layout-grid-align: justify;> 矿山机械门类繁多,但有一共同点:通过控制某种特定的运动来处理矿石。而这种特定的运动就是矿石与机器相互作用下的多体运动。例如,皮带运输机,SAG与AG球磨机,矿石粉碎机,矿石筛选机,等等。这些机械作矿石处理的目的是将矿石尺寸一步一步变小,最终在30至200微米的范围内,将金属与杂物分离。不言而喻,多体动力学方法在矿山机械的设计与控制方面应起到关键性作用。说来叫人难以相信,直到八十年代末,多体动力学才开始被矿山机械类大学研究人员重视起来。美国的犹他大学于八十年代末才培养出全美第一个将多体动力学应用于矿石球磨机的博士。但本人发现凡由矿山专业毕业的多体动力学博士力学基础较薄弱。因此,他们的研究进展缓慢,很难深入。1997年,当我当时的老板决定进军矿山机械多体应用这一领域时,我与我的搭档俄裔科学家轻而易举地超过了当时的对手,并一步走到了世界前沿。这里用一个数据来证明此言不虚。2001年,在“SAG 2001”国际会议上,犹他大学教授作“Key Note"发言时宣布他的研究团队已能模拟含5万个物体的缩小了尺寸的球磨机,并预言两年内达到20万个物体”[1]。他不曾想到,随后我老板发言时宣布,我们已能模拟含百万个物体的全尺寸球磨机[2]。那教授当时的窘态可想而知。读者若想对矿山机械中的多体运动摸拟有一些感性了解,可以通过链接看到一些图片介绍: <a href="http://www.conveyor-dynamics.com/projects/popup/fs_ctexamples.htm" target="_blank" ><FONT color=#000000>http://www.conveyor-dynamics.com/projects/popup/fs_ctexamples.htm</FONT></A></P>
<P none? mso-layout-grid-align: justify;> 当然,内行要看得是门道。下面作一个简单介绍。</P>
<P none? mso-layout-grid-align: justify;> 从理论上来说,矿山机械多体运动的难点是: <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>1.必须有非常有效的随机碰撞处理功能。设想有N个物体,每个物体都可能与其余N-1个物体在下一时刻相撞。这要花多少时间才能完成一次碰撞处理(?):与N平方成正比!可是我和俄裔科学家所发明的方法仅与N一次方成正比。 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>2.必须有一套建立在概率论基础上的应力,能量分析方法。同时还要有一套建立在概率论基础上的分析实际矿山机械多体运动随机信号方法以与多体运动数值模拟结果作对比。我们已经发展出了这样一套软件([3])。 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>3.在模拟矿石粉碎机中的多体运动时,必须非常有效地模拟矿石的破裂。我们已取的成功。 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;> 从功能上来说,矿山机械多体运动数值模拟必须为矿山机械设计者提供他门最想要的数据: <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>1。能耗多大 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>2。效率多高 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>3。寿命多长 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;> 对於能耗多大及效率多高问题,多体力学工作者可能觉得不难回答。但寿命多长问题就很难轻松回答了。要知道,大多数矿山机械都是因摩擦磨损或更换部件或寿终正寝的。因此,通过多体运动模拟是否能提供由摩擦磨损决定的寿命数据就摆在了我和我同事的面前了。经过努力,我们最终取得了成功。目前,提供球磨机寿命预测及优化服务已是我们部门最赚钱的业务。关于如何模拟摩擦磨损并预测和优化寿命,可参阅参考文献[4]。 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>若你发现我的系列文章中有错,请向我批评指正。来信请寄xiangjunqiu@yahoo.com。在此表示感谢。 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>参考文献 <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>1. Rajamani, R. K. and B. K. Mishra, Three Dimensional Simulation of Charge Motion in Plant Size SAG Mills, Proc. Int. Autogenous and Semiautogenous Grinding Technology, SAG2001, vol IV,pp49-57, 2001,Vancouver,B.C.,Canada <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>2.Herbst, J. A. and L. K. Nordell, Optimization of the Design of SAG Mill Internals Using High Fidelity Simulation, Proc. Int. Autogenous and Semiautogenous Grinding Technology, SAG2001, vol IV,pp150-164, 2001,Vancouver,B.C.,Canada <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>3.Song M., Qiu, X., A. Potapov, and L. Nordell, MILLSTAT--A Software Package for Statistical Analysis of Mill Databases, Proc. Int. Autogenous and Semiautogenous Grinding Technology, SAG2001, vol IV,pp85-100, 2001,Vancouver,B.C.,Canada <BR>
<P>
<P>
<P none? mso-layout-grid-align: justify;>
<P>
<P>
<P none? mso-layout-grid-align: justify;>4.Qiu, X., A. Potapov, M. Song and L. Nordell, Prediction of Wear of Mill Lifters Using Discrete Element Method, Proc. Int. Autogenous and Semiautogenous Grinding Technology, SAG2001, vol IV,pp260-271, 2001,Vancouver,B.C.,Canada </P> |