声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 3170|回复: 3

[FFT] 求助傅立叶变换的c语言源代码,谢谢了。

[复制链接]
发表于 2006-3-1 21:01 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
本帖最后由 wdhd 于 2016-3-14 14:32 编辑

  谢谢大家,请大家多帮忙!!
回复
分享到:

使用道具 举报

发表于 2006-3-16 11:15 | 显示全部楼层

回复:(游云)求助傅立叶变换的c语言源代码,谢谢了。...

本帖最后由 wdhd 于 2016-3-14 14:33 编辑
  1. 1, DIT:
  2. ==============
  3. 1.1 Matlab code:
  4. ===============

  5. function fft_2dit(n)

  6. t = [0:n-1];
  7. m= log2(n);

  8. %%%%%%%% raw data %%%%%%%%%%%
  9. x = sin(t)/1 + sin(2*t)/2 - sin(3*t)/3 - sin(4*t)/4 + sin(5*t)/5;
  10. y = t*0;

  11. subplot(3,1,1)
  12. plot(t, x, '-');
  13. title('radix-2 DIT FFT');
  14. xlabel(' t');
  15. ylabel(' x');
  16. grid;

  17. %%%%%%%%%%% FFT %%%%%%%%%%%%%
  18. %inverse bits
  19. j = 1;
  20. n1 = n - 1;
  21. for i = 1:n1
  22. if i < j
  23. xt = x(j);
  24. x(j) = x(i);
  25. x(i) = xt;

  26. xt = y(j);
  27. y(j) = y(i);
  28. y(i) = xt;
  29. end

  30. k = n / 2;

  31. while k<j
  32. j = j - k;
  33. k = k / 2;
  34. end

  35. j = j + k;
  36. end


  37. %calculate FFT
  38. for k = 1:m
  39. n2 = 2.^(k-1);
  40. n1 = 2.^k;

  41. ee = -2*pi/n1;
  42. for j = 1 : n2
  43. a = (j-1)*ee;
  44. c = cos(a);
  45. s = sin(a);
  46. for p = j:n1:n
  47. q = p + n2;

  48. xtt = x(p);
  49. ytt = y(p);

  50. xt = x(q)*c - y(q)*s;
  51. yt = x(q)*s + y(q)*c;

  52. x(p) = xtt + xt;
  53. y(p) = ytt + yt;

  54. x(q) = xtt - xt;
  55. y(q) = ytt - yt;
  56. end
  57. end
  58. end

  59. subplot(3,1,2)
  60. plot(t, x,'-r');
  61. xlabel(' t');
  62. ylabel('x');
  63. grid;

  64. %%%%%%%%%% IFFT %%%%%%%%%%
  65. %inverse bits
  66. j = 1;
  67. n1 = n - 1;
  68. for i = 1:n1
  69. if i < j
  70. xt = x(j);
  71. x(j) = x(i);
  72. x(i) = xt;

  73. xt = y(j);
  74. y(j) = y(i);
  75. y(i) = xt;
  76. end

  77. k = n / 2;

  78. while k<j
  79. j = j - k;
  80. k = k / 2;
  81. end

  82. j = j + k;
  83. end

  84. %calculate IFFT
  85. n2 = 2;
  86. for k = 1:m
  87. n2 = 2.^(k-1);
  88. n1 = 2.^k;

  89. ee = 2*pi/n1;
  90. for j = 1 : n2
  91. a = (j-1)*ee;
  92. c = cos(a);
  93. s = sin(a); for p = j:n1:n
  94. q = p + n2;

  95. xtt = x(p);
  96. ytt = y(p);

  97. xt = x(q)*c - y(q)*s;
  98. yt = x(q)*s + y(q)*c;

  99. x(p) = xtt + xt;
  100. y(p) = ytt + yt;

  101. x(q) = xtt - xt;
  102. y(q) = ytt - yt;
  103. end
  104. end
  105. end

  106. subplot(3,1,3)
  107. plot(t, x/n, '-');
  108. xlabel('t');
  109. ylabel('x');
  110. grid;

  111. ======================
  112. 1.2 C code:
  113. ======================
  114. #define PI 3.1415926535
  115. /**************************************************************
  116. *
  117. *
  118. *
  119. *
  120. *
  121. ***************************************************************/
  122. void fft_2dit(int n, double* x, double* y)
  123. {
  124. double a, e, xt, yt, c, s, xtt,ytt;
  125. int n1, n2, i, j, k, m, q;

  126. /*
  127. * Calculate m such that n=2^m
  128. *
  129. * NOTE: If frexp() == 1, then frexp does not conform
  130. * to the ANSI C spec of [0.5, 1)
  131. */

  132. m = (int)(log10(n) / log10(2));
  133. if( pow(2, m) != n)
  134. {
  135. printf("m must be 2's pow!\n");
  136. }

  137. /* --------------MAIN FFT LOOPS----------------------------- */

  138. /* Parameter adjustments */
  139. --y;
  140. --x;

  141. /* ------------DIGIT REVERSE COUNTER----------------- */
  142. j = 1;
  143. n1 = n - 1;
  144. for(i= 1; i<= n1; i++)
  145. {
  146. if(i < j)
  147. {
  148. xt = x[j];
  149. x[j] = x[i];
  150. x[i] = xt;

  151. xt = y[j];
  152. y[j] = y[i];
  153. y[i] = xt;
  154. }

  155. k = n / 2;

  156. while(k < j)
  157. {
  158. j = j - k;
  159. k = k / 2;
  160. }

  161. j = j + k;
  162. }

  163. //calculate FFT
  164. for(k = 1; k <= m; k++)
  165. {
  166. n2 = 1<<(k-1);
  167. n1 = 1<<k;

  168. e = -2*PI/n1;
  169. for(j = 1; j <= n2; j++)
  170. {
  171. a = (j-1)*e;
  172. c = cos(a);
  173. s = sin(a);
  174. for(i = j; i <= n; i += n1)
  175. {
  176. q = i + n2;

  177. xtt = x[i];
  178. ytt = y[i];

  179. xt = x[q]*c - y[q]*s;
  180. yt = x[q]*s + y[q]*c;

  181. x[i] = xtt + xt;
  182. y[i] = ytt + yt;

  183. x[q] = xtt - xt;
  184. y[q] = ytt - yt;
  185. }
  186. }
  187. }
  188. }

  189. /**************************************************************
  190. *
  191. *
  192. *
  193. *
  194. *
  195. ***************************************************************/
  196. void ifft_2dit(int n, double* x, double* y)
  197. {
  198. double a, e, xt, yt, c, s, xtt,ytt;
  199. int n1, n2, i, j, k, m, q;

  200. /*
  201. * Calculate m such that n=2^m
  202. *
  203. * NOTE: If frexp() == 1, then frexp does not conform
  204. * to the ANSI C spec of [0.5, 1)
  205. */

  206. m = (int)(log10(n) / log10(2));
  207. if( pow(2, m) != n)
  208. {
  209. printf("m must be 2's pow!\n");
  210. }

  211. /* --------------MAIN FFT LOOPS----------------------------- */

  212. /* Parameter adjustments */
  213. --y;
  214. --x;

  215. /* ------------DIGIT REVERSE COUNTER----------------- */
  216. j = 1;
  217. n1 = n - 1;
  218. for(i= 1; i<= n1; i++)
  219. {
  220. if(i < j)
  221. {
  222. xt = x[j];
  223. x[j] = x[i];
  224. x[i] = xt;

  225. xt = y[j];
  226. y[j] = y[i];
  227. y[i] = xt;
  228. }

  229. k = n / 2;

  230. while(k < j)
  231. {
  232. j = j - k;
  233. k = k / 2;
  234. }

  235. j = j + k;
  236. }

  237. //calculate IFFT
  238. for(k = 1; k <= m; k++)
  239. {
  240. n2 = 1<<(k-1);
  241. n1 = 1<<k;

  242. e = 2*PI/n1;
  243. for(j = 1; j <= n2; j++)
  244. {
  245. a = (j-1)*e;
  246. c = cos(a);
  247. s = sin(a);
  248. for(i = j; i <= n; i += n1)
  249. {
  250. q = i + n2;

  251. xtt = x[i];
  252. ytt = y[i];

  253. xt = x[q]*c - y[q]*s;
  254. yt = x[q]*s + y[q]*c;

  255. x[i] = xtt + xt;
  256. y[i] = ytt + yt;

  257. x[q] = xtt - xt;
  258. y[q] = ytt - yt;
  259. }
  260. }
  261. }
  262. //each IFFT-ed data must be divided by 8
  263. for(i = 1; i <= n; i++)
  264. {
  265. x[i] = x[i]/n;
  266. y[i] = y[i]/n;
  267. }
  268. }

  269. ===================
  270. 2, DIF
  271. ===================
  272. 2.1 Matlab code:
  273. ===================

  274. function fft_2dif(n)

  275. m = log2(n);
  276. t = [0:n-1];

  277. %%%%%%%%%% raw data %%%%%%%%
  278. x = sin(t)/1 + sin(2*t)/2 - sin(3*t)/3 - sin(4*t)/4 + sin(5*t)/5;
  279. y = t*0;

  280. subplot(3,1,1)
  281. plot(t, x, '-');
  282. title('radix-2 DIF FFT');
  283. xlabel(' t');
  284. ylabel(' x');
  285. grid;

  286. %%%%%%%%%% FFT %%%%%%%%%%%%
  287. n2 = n;
  288. for k = 1:m
  289. n1 = n2;
  290. n2 = n2 / 2;
  291. ee = -2*pi/n1;
  292. a = 0.0;
  293. for j = 1:n2
  294. c = cos(a);
  295. s = sin(a);
  296. a = j*ee;
  297. for p = j:n1:n
  298. q = p + n2;

  299. xt = x(p) - x(q);
  300. yt = y(p) - y(q);

  301. x(p) = x(p) + x(q);
  302. y(p) = y(p) + y(q);

  303. x(q) = c*xt - s*yt;
  304. y(q) = c*yt + s*xt;
  305. end
  306. end
  307. end

  308. j = 1;
  309. n1 = n - 1;
  310. for i = 1:n1
  311. if i < j
  312. xt = x(j);
  313. x(j) = x(i);
  314. x(i) = xt;

  315. xt = y(j);
  316. y(j) = y(i);
  317. y(i) = xt;
  318. end

  319. k = n / 2;

  320. while k<j
  321. j = j - k;
  322. k = k / 2;
  323. end

  324. j = j + k;
  325. end

  326. subplot(3,1,2)
  327. plot(t, x,'-r');
  328. xlabel('t');
  329. ylabel('x');
  330. grid;

  331. %%%%%%%%% IFFT %%%%%%%%%%%%%
  332. n2 = n;
  333. for k = 1:m
  334. n1 = n2;
  335. n2 = n2 / 2;
  336. ee = 2*pi/n1;
  337. a = 0.0;
  338. for j = 1:n2
  339. c = cos(a);
  340. s = sin(a);
  341. a = j*ee;
  342. for p = j:n1:n
  343. q = p + n2;

  344. xt = x(p) - x(q);
  345. yt = y(p) - y(q);

  346. x(p) = x(p) + x(q);
  347. y(p) = y(p) + y(q);

  348. x(q) = c*xt - s*yt;
  349. y(q) = c*yt + s*xt;
  350. end
  351. end
  352. end

  353. j = 1;
  354. n1 = n - 1;
  355. for i = 1:n1
  356. if i < j
  357. xt = x(j);
  358. x(j) = x(i);
  359. x(i) = xt;

  360. xt = y(j);
  361. y(j) = y(i);
  362. y(i) = xt;
  363. end

  364. k = n / 2;

  365. while k<j
  366. j = j - k;
  367. k = k / 2;
  368. end

  369. j = j + k;
  370. end

  371. subplot(3,1,3)
  372. plot(t, x/n, '-');
  373. xlabel(' t');
  374. ylabel(' x');
  375. grid;

  376. ======================
  377. 2.2 C code:
  378. ======================

  379. /*****************************************************************************
  380. *
  381. * fft: FFT implementation with Cooley-Tukey radix-2 DIF
  382. *
  383. * Arguments: n -- data number to be FFT-ed
  384. * x -- pointer to real section of original data
  385. * y -- pointer to imaginary section of original data
  386. *
  387. * Notes: (original comments for the implementation)
  388. * fft_rt.c - Cooley-Tukey radix-2 DIF FFT
  389. * Complex input data in arrays x and y
  390. * C.S. Burrus, Rice University, Sept. 1983
  391. *
  392. * Copyright 1995-2002 The MathWorks, Inc.
  393. * $Revision: 1.15 $ $Date: 2002/04/12 22:18:20 $
  394. *****************************************************************************
  395. */
  396. void fft_2dif(int n, double *x, double *y)
  397. {
  398. double a, e, xt, yt, c, s;
  399. int n1, n2, i, j, k, m, q;

  400. /*
  401. * Calculate m such that n=2^m
  402. *
  403. * NOTE: If frexp() == 1, then frexp does not conform
  404. * to the ANSI C spec of [0.5, 1)
  405. */

  406. m = (int)(log10(n) / log10(2));
  407. if( pow(2, m) != n)
  408. {
  409. printf("m must be 2's pow!\n");
  410. }

  411. /* --------------MAIN FFT LOOPS----------------------------- */

  412. /* Parameter adjustments */
  413. --y;
  414. --x;

  415. /* Function Body */
  416. n2 = n;
  417. for (k = 1; k <= m; ++k)
  418. {
  419. n1 = n2;
  420. n2 /= 2;
  421. e = (double)-6.283185307179586476925286766559005768394 / n1;
  422. a = 0.0;

  423. for (j = 1; j <= n2; ++j)
  424. {
  425. c = cos(a);
  426. s = sin(a);
  427. a = j * e;

  428. for (i = j;
  429. i <= n;
  430. i += n1
  431. )
  432. {
  433. q = i + n2;
  434. xt = x[i] - x[q];
  435. x[i] += x[q];

  436. yt = y[i] - y[q];
  437. y[i] += y[q];

  438. x[q] = c * xt - s * yt;
  439. y[q] = c * yt + s * xt;
  440. }
  441. }
  442. }

  443. /* ------------DIGIT REVERSE COUNTER----------------- */

  444. j = 1;
  445. n1 = n - 1;
  446. for (i = 1; i <= n1; ++i)
  447. {
  448. if (i < j)
  449. {
  450. xt = x[j];
  451. x[j] = x[i];
  452. x[i] = xt;

  453. xt = y[j];
  454. y[j] = y[i];
  455. y[i] = xt;
  456. }

  457. k = n / 2;

  458. while (k<j)
  459. {
  460. j -= k;
  461. k /= 2;
  462. }

  463. j += k;
  464. }
  465. }

  466. /*****************************************************************************
  467. *
  468. * ifft: IFFT implementation with Cooley-Tukey radix-2 DIF
  469. *
  470. * Arguments: n -- data number to be IFFT-ed
  471. * x -- poiter to the real section of FFT-ed data
  472. * y -- poiter to the imaginary section of FFT-ed data
  473. *
  474. * Notes: the only two difference between fft() and ifft() are:
  475. * (1) e = (double) 6.283185307179586476925286766559005768394 / n1, in
  476. fft()
  477. * changed to
  478. * e = (double)-6.283185307179586476925286766559005768394 / n1, in
  479. iff();
  480. * (2)each IFFT-ed data must be divied by n;
  481. *****************************************************************************
  482. */
  483. void ifft_2dif(int n, double *x, double *y)
  484. {
  485. double a, e, xt, yt, c, s;
  486. int n1, n2, i, j, k, m, q;

  487. /*
  488. * Calculate m such that n=2^m
  489. *
  490. * NOTE: If frexp() == 1, then frexp does not conform
  491. * to the ANSI C spec of [0.5, 1)
  492. */

  493. m = (int)(log10(n) / log10(2));
  494. if( pow(2, m) != n)
  495. {
  496. printf("m must be 2's pow!\n");
  497. }

  498. /* --------------MAIN FFT LOOPS----------------------------- */

  499. /* Parameter adjustments */
  500. --y;
  501. --x;

  502. /* Function Body */
  503. n2 = n;
  504. for (k = 1; k <= m; ++k) //step loops
  505. {
  506. n1 = n2;
  507. n2 /= 2;
  508. e = (double)6.283185307179586476925286766559005768394 / n1;
  509. a = 0.0;

  510. for (j = 1; j <= n2; ++j) //butterfly loops within each gr
  511. oup
  512. {
  513. c = cos(a);
  514. s = sin(a);
  515. a = j * e; //theta for calculating scale fa
  516. ctor

  517. for (i = j; //group loops
  518. i <= n;
  519. i += n1
  520. ) //top input of a butterfly
  521. {
  522. q = i + n2; //bottom input of a butterfly

  523. xt = x[i] - x[q];
  524. x[i] += x[q];

  525. yt = y[i] - y[q];
  526. y[i] += y[q];

  527. x[q] = c * xt - s * yt;
  528. y[q] = c * yt + s * xt;
  529. }
  530. }
  531. }

  532. /* ------------DIGIT REVERSE COUNTER----------------- */

  533. j = 1;
  534. n1 = n - 1;
  535. for (i = 1; i <= n1; ++i)
  536. {
  537. if (i < j)
  538. {
  539. xt = x[j];
  540. x[j] = x[i];
  541. x[i] = xt;

  542. xt = y[j];
  543. y[j] = y[i];
  544. y[i] = xt;
  545. }

  546. k = n / 2;

  547. while (k<j)
  548. {
  549. j -= k;
  550. k /= 2;
  551. }

  552. j += k;
  553. }

  554. //each IFFT-ed data must be divided by n
  555. for(i = 1; i <= n; i++)
  556. {
  557. x[i] = x[i]/n;
  558. y[i] = y[i]/n;
  559. }
  560. }


复制代码




这是matlab的,你用c实现一下就可以了
发表于 2006-3-16 11:27 | 显示全部楼层

回复:(游云)求助傅立叶变换的c语言源代码,谢谢了。...

本帖最后由 wdhd 于 2016-3-14 14:34 编辑

128点DIT FFT函数:
/* 采样来的数据放在dataR[ ]数组中,运算前dataI[ ]数组初始化为0 */



  1. void FFT(float dataR[],float dataI[])
  2. {int x0,x1,x2,x3,x4,x5,x6;
  3. int L,j,k,b,p;
  4. float TR,TI,temp;
  5. /********** following code invert sequence ************/
  6. for(i=0;i<128;i++)
  7. { x0=x1=x2=x3=x4=x5=x6=0;
  8. x0=i&0x01; x1=(i/2)&0x01; x2=(i/4)&0x01; x3=(i/8)&0x01;x4=(i/16)&0x01; x5=(i/32)&0x01; x6=(i/64)&0x01;
  9. xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;
  10. dataI[xx]=dataR[i];
  11. }
  12. for(i=0;i<128;i++)
  13. { dataR[i]=dataI[i]; dataI[i]=0; }
  14. /************** following code FFT *******************/
  15. for(L=1;L<=7;L++) { /* for(1) */
  16. b=1; i=L-1;
  17. while(i>0)
  18. {b=b*2; i--;} /* b= 2^(L-1) */
  19. for(j=0;j<=b-1;j++) /* for (2) */
  20. { p=1; i=7-L;
  21. while(i>0) /* p=pow(2,7-L)*j; */
  22. {p=p*2; i--;}
  23. p=p*j;
  24. for(k=j;k<128;k=k+2*b) /* for (3) */
  25. { TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];
  26. dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];
  27. dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];
  28. dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];
  29. dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];
  30. } /* END for (3) */
  31. } /* END for (2) */
  32. } /* END for (1) */
  33. for(i=0;i<32;i++){ /* 只需要32次以下的谐波进行分析 */
  34. w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);
  35. w[i]=w[i]/64;}
  36. w[0]=w[0]/2;
  37. } /* END FFT */
复制代码
发表于 2006-3-24 10:59 | 显示全部楼层

split-radix DIF fft algorithm

本帖最后由 wdhd 于 2016-3-14 14:34 编辑
  1. /*----------------------------------------------------------------------
  2. Routine msplfft:to perform the split-radix DIF fft algorithm.
  3. input parameters:
  4. xr,xi : float array. real and image of input signal.
  5. n : the dimension of xr.
  6. isign:if isign=-1 For Forward Transform
  7. if isign=+1 For Inverse Transform.
  8. output parameters:
  9. xr,xi : float array. DFT result.
  10. Notes:
  11. n must be power of 2.
  12. ----------------------------------------------------------------------*/
  13. void CAnalyze::MsplFft(float *xr,float *xi,int n,int isign)
  14. {
  15. _complex xt;
  16. float es,e,a,a3,cc1,ss1,cc3,ss3,r1,r2,s1,s2,s3;
  17. int m,n2,k,n4,j,is,id,i1,i2,i3,i0,n1,i,nn;

  18. for(m=1;m<=16;m++)
  19. {
  20. nn=(int)pow(2,m);
  21. if(n==nn)break;
  22. }

  23. if(m>16)
  24. {
  25. AfxMessageBox(" N is not a power of 2 ! \n");
  26. return;
  27. }
  28. n2=n*2;
  29. es=(float)(-isign*atan(1.0f)*8.0f);
  30. for(k=1;k<m;k++)
  31. {
  32. n2=n2/2;
  33. n4=n2/4;
  34. e=es/n2;
  35. a=0.0;
  36. for(j=0;j<n4;j++)
  37. {
  38. a3=3*a;
  39. cc1=(float)cos(a);
  40. ss1=(float)sin(a);
  41. cc3=(float)cos(a3);
  42. ss3=(float)sin(a3);
  43. a=(j+1)*e;
  44. is=j;
  45. id=2*n2;
  46. do
  47. {
  48. for(i0=is;i0<n;i0+=id)
  49. {
  50. i1=i0+n4;
  51. i2=i1+n4;
  52. i3=i2+n4;
  53. r1=xr[i0]-xr[i2];
  54. s1=xi[i0]-xi[i2];
  55. r2=xr[i1]-xr[i3];
  56. s2=xi[i1]-xi[i3];
  57. xr[i0]+=xr[i2];xi[i0]+=xi[i2];
  58. xr[i1]+=xr[i3];xi[i1]+=xi[i3];
  59. if(isign!=1)
  60. {
  61. s3=r1-s2;
  62. r1+=s2;
  63. s2=r2-s1;
  64. r2+=s1;
  65. }
  66. else
  67. {
  68. s3=r1+s2;
  69. r1=r1-s2;
  70. s2=-r2-s1;
  71. r2=-r2+s1;
  72. }
  73. xr[i2]=r1*cc1-s2*ss1;
  74. xi[i2]=-s2*cc1-r1*ss1;
  75. xr[i3]=s3*cc3+r2*ss3;
  76. xi[i3]=r2*cc3-s3*ss3;
  77. }
  78. is=2*id-n2+j;
  79. id=4*id;
  80. }while(is<n-1);
  81. }
  82. }
  83. /* ------------ special last stage -------------------------*/
  84. is=0;
  85. id=4;
  86. do
  87. {
  88. for(i0=is;i0<n;i0+=id)
  89. {
  90. i1=i0+1;
  91. xt.x=xr[i0];
  92. xt.y=xi[i0];
  93. xr[i0]=(float)(xt.x+xr[i1]);
  94. xi[i0]=(float)(xt.y+xi[i1]);
  95. xr[i1]=(float)(xt.x-xr[i1]);
  96. xi[i1]=(float)(xt.y-xi[i1]);
  97. }
  98. is=2*id-2;
  99. id=4*id;
  100. }while(is<n-1);

  101. j=1;
  102. n1=n-1;
  103. for(i=1;i<=n1;i++)
  104. {
  105. if(i<j)
  106. {
  107. xt.x=xr[j-1];
  108. xt.y=xi[j-1];
  109. xr[j-1]=xr[i-1];
  110. xi[j-1]=xi[i-1];
  111. xr[i-1]=(float)xt.x;
  112. xi[i-1]=(float)xt.y;
  113. }

  114. k=n/2;
  115. do
  116. {
  117. if(k>=j)
  118. break;
  119. j-=k;
  120. k/=2;
  121. }while(1);
  122. j+=k;
  123. }

  124. if(isign==-1)
  125. return;
  126. for(i=0;i<n;i++)
  127. {
  128. xr[i]/=(float)n;
  129. xi[i]/=(float)(n);
  130. }
  131. }
复制代码
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-14 01:19 , Processed in 0.065888 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表