|
回复 楼主 cbufeng 的帖子
理论上应该是可以求得的, 两方程,两未知数, 第三个方程只要判断就可以了.
> assume(x1,constant,y1,constant,r1,constant,x2,constant,y2,constant,r2,constant);
> solve({(x1-x)^2+(y1-y)^2-r1^2,(x2-x)^2+(y2-y)^2-r2^2},{x,y});
可以得到符号解,但是事实上恐怕要给出具体的值才能求得,符号解直接会有Rootof函数,参看allvalues.
结果太长,不贴全了,第三式子,直接与0比较即可
代码如下
> x1:=10;
> y1:=10;
> x2:=20;
> y2:=20;
> r1:=20;
> r2:=20;
> solve({(x1-x)^2+(y1-y)^2-r1^2,(x2-x)^2+(y2-y)^2-r2^2},{x,y});
x1 := 10
y1 := 10
x2 := 20
y2 := 20
r1 := 20
r2 := 20
2
{y = 5 RootOf(2 - 6 _Z + _Z , label = _L1),
2
x = 30 - 5 RootOf(2 - 6 _Z + _Z , label = _L1)}
> allvalues(%);
1/2 1/2
{y = 15 + 5 7 , x = 15 - 5 7 },
1/2 1/2
{x = 15 + 5 7 , y = 15 - 5 7 }
> xy := %;
1/2 1/2
xy := {y = 15 + 5 7 , x = 15 - 5 7 },
1/2 1/2
{x = 15 + 5 7 , y = 15 - 5 7 }
> xy[1];
1/2 1/2
{y = 15 + 5 7 , x = 15 - 5 7 }
> xy[1,1];
1/2
y = 15 + 5 7
> x:=rhs(xy[1,1]);
1/2
x := 15 + 5 7
> y:=rhs(xy[1,2]);
1/2
y := 15 - 5 7
> r3:=20;
r3 := 20
> x3:=15;
x3 := 15
> y3:=15;
y3 := 15
> is(((x3-x)^2+(y3-y)^2)<=r3^2);
true
>
[ 本帖最后由 alljoyland 于 2010-8-4 23:47 编辑 ] |
-
|