设为首页收藏本站联系我们

声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 262|回复: 6

[其他相关] 请教一个关于轴承故障的问题

[复制链接]
发表于 2017-1-2 11:53 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?我要加入

x
如果轴承跑外圏的同时,轴承外圈有剥落之类的故障
频谱图上外圈缺陷频率会出现转频的边带吗?

回复
分享到:

使用道具 举报

发表于 2017-1-4 08:42 | 显示全部楼层
观察不到吧
发表于 2017-1-4 14:10 | 显示全部楼层
再学习一下调制和边带的机理。自己想想就明白了!
回复 支持 0 反对 1

使用道具 举报

发表于 2017-1-4 23:42 | 显示全部楼层
剥落的话那是高频了,上千赫兹

点评

是吗?能详细说一下吗  详情 回复 发表于 2017-1-5 08:31
发表于 2017-1-5 08:31 | 显示全部楼层
jayceefang 发表于 2017-1-4 23:42
剥落的话那是高频了,上千赫兹

是吗?能详细说一下吗
发表于 2017-1-9 11:10 | 显示全部楼层
本帖最后由 18618180420 于 2017-1-9 11:25 编辑

很有可能会出现转频边带的

参考资料.docx

15.89 KB, 下载次数: 16

发表于 2017-1-10 09:24 | 显示全部楼层
楼上的资料 我大致看了一下  不错  
DEFECT SEVERITY
Bearing Behavior
A properly selected and installed angular contact bearing should have anevenly
distributed thrust load on theentire surface of both races. Under such conditions the
bearing typically developssmall defects all the way around the race. The combination
of a 360 degree load zone andmultiple small defects produces a series of harmonics of
ball pass frequency. The numberof harmonics generated is related to the circumference
of both races and/or the lengthof the load zone.
A properly selected and installed deep groove ball bearing should carry aradial load in
about one third of thecircumference. Under these conditions, the bearing develops a
defect in the load zone thatgenerates a single ball pass frequency. Two defects can
generate the second harmonic ofball pass frequency. If the load -- as "felt" by the
bearing -- is on the rotor, as occurs in imbalance, a spall shouldoccur on the inner race
(if the inner race is rotatingand the outer race is stationary). The load zone is always at
the same spot on the innerrace. If the load is external to the rotor, as is the case with
over-tight V belts, the defectshould occur on the outer race at the load zone, because the
load zone is always at the sameplace on the outer race.
If a thrust bearing is notevenly loaded over its circumference and has a radial load, it
will behave like a radialbearing; that is, it will produce a single ball pass frequency. If
a radial bearing has anabnormal thrust load, it will behave like a thrust bearing; that is,
it will generate severalharmonics of the ball pass frequency. Bearings that are subjected
to the type of loads for which they were not designed fail quickly.Excessive loads can
be identified with spectralanalysis. This is accomplished by accurately measuring the
generated BPFO or BPFI and thencalculating the contact angle. The contact angle
identifies the amount of thrustload.
A beginning defect on either race generates ball pass frequency. Early spallinformation
can be identified when hairlinecracks develop. Manufacturing defects, such as holes in
the race the size of a sharppencil point, can be identified. Ball pass frequency can be
detected in unloaded machines,for example an electric motor not connected to a driven
unit or a new motor on the shopfloor.
After a defect has begun, itwill get larger, and the spectral bandwidth will get wider
until the spectrum is modulatedwith the speed of the rotating unit. The ball pass
frequency and the ball passfrequency plus or minus the unit speed may be generated.
Modulation can continue untilthe ball pass frequency is no longer apparent. (In some
cases the amplitudes of the sumand difference frequencies are equal to or exceed those
of the ball pass frequency.)The spectrum then becomes a series of frequency peaks
whose difference frequency isequal to the unit speed. These phenomena occur when a
growing fatigue spall ispresent on the race.
The limits of a significantchange in vibration level depend on the type of equipment involved and thecause of the vibration. For a coupled pump and motor that normally
vibrate at 0.07 IPS, a changeof 0.05 IPS could be significant and should be inspected. On
the other hand, a bucketelevator that normally vibrates within a range on either side of
0.5 IPS could be checked on aperiodic basis or when a change of 0.2 IPS occurs. At the
other extreme, a cracked innerrace may not cause a noticeable change in the vibration
amplitude.
Defects in antifrictionbearings can be identified at 0.008 IPS; an increase of 0.1 IPS in a
bearing could thus beimportant, whereas an increase of 0.1 IPS in an imbalance condition
might cause little concern.
Excessive vibration can bedefined as that level of vibration that experience has shown to
be harmful to a particularpiece of equipment. For a directly coupled pump and motor,
excessive vibration could be0.05 IPS at a bearing frequency. For a fan that weighs 2,000
pounds, 0.25 IPS at runningspeed could be excessive. At the other extreme, a 20 pound
fan could vibrate at 2.0 IPS atrunning speed for long periods without incident.
Bearings in rotating machineryshould be periodically checked with a frequency spectrum
and time signal to detect and studydeveloping defects on the outer and inner races. An
accurate method for thecalculation of bearing defect length is needed to allow a
quantitative determination ofthe defect severity. With the defect size and progression
of development determined, theremaining bearing life can be estimated.
Empirical measurements indicatethat a 6313 bearing can generate six harmonics of BPFI
if the bearing a) is in athrust load; b) is failing from a shallow flaking spall; and c) has
a defect all the way around therace. The same bearing can generate seven harmonics of
BPFO if the above threeconditions are met.
When deep fatigue spalls arepresent, pulses are generated. The FTT contains several
harmonics when pulses arepresent. Etching, corrosion, and fluting can also cause many
harmonics.
In spherical and tapered rollerbearings, the length of the defect on the outer race can be
approximated by harmoniccontent. If the bearing is failing from a shallow flaking spall,
each true harmonic of BPFOequals about 0.5 inches of defect length. For example, a
spherical roller bearing thatis generating six harmonics of outer race ball pass frequency
indicates an outer race defectabout three inches long.
If the above knowledge and thefollowing information on the inner race are used to
approximate defect size, andapplied to your diagnostics, it is helpful in assigning
priorities for repair. Forexample, we may want to replace bearings with large defects
before we replace bearings with small defects.

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|联系我们|手机版|声振论坛    

GMT+8, 2017-6-25 16:43 , Processed in 0.138168 second(s), 23 queries , Gzip On, Memcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

黑ICP备15005267号-1 黑公网安备 23010302000127号
快速回复 返回顶部 返回列表